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In this paper, we present a new method for signal reconstruction from multiple sets of samples with 
unknown offsets which can be written as a set of polynomial equations in both the unknown signal 
coefficients and the offsets. The solution can then be computed using Groebner bases. In any practical 
setting, the samples are corrupted by noise, and then there is no algebraic solution. Thus, the next step 
is to address this noisy version of the problem, and to show how a good approximation can be obtained 
from multiple Groebner bases for subsets of samples. This provides us with an elegant solution method 
for the initial nonlinear problem. We show two examples for the reconstruction of polynomial signals 
and Fourier series. 
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INTRODUCTION    

 

Groebner basis theory is a very powerful tool from alge- will use for our reconstruction problem. Groebner bases 
 

braic geometry. The theory was originally introduced by are then applied to the multichannel sampling problem in 
 

Buchberger (1965), and can be found in some very good Section 5. Section 6 gives the ideal membership problem, 
 

text books, like for example the book by Cox et al. (1996), Section7, describe the Buchberger's algorithm. Solution 
 

as well as in many free (Macaulay2, Singular) and com- of polynomial equations and given numerical example in 
 

mercial (Magma, Maple, Mathematica) software packa- Section 8. Finally, Section9 concludes this paper. 
 

ges. Groebner bases have also found their  way into    
 

many applications in signal processing and system theory    
 

(Buchberger, 2001a, b). Examples can be found in filter 
Problem setup  

 

bank design (Charoenlarpnopparut, 2000; Faugere et al.,  
 

   
 

1998; Kalker et al., 1995), multichannel deconvolution Let us consider a finite dimensional Hilbert space H, for  

(Unser and Zerubia, 1997), or motion estimation (Holt et 
 

which we have a basis   l (t)l0,...,L1 . That is, H = 
 

al., 1996). In this last paper, Holt et al. (1996) use alge- 
 

braic geometry to determine the number of solutions and span  l (t)l0,...,L1 . For simplicity, let us consider the 
 

uniqueness  for  certain  problems  in  three-dimensional 
functions  l (t)defined on the interval [0, 1]. For perio- 

 

motion estimation. They analyze the 3D motion of a rigid 
 

link moving in a plane where one endpoint is known, and dic functions, we will assume the period to be 1, such that 
 

the extraction of 3D motion from 2D optical flow informa- we consider one period.  
 

tion. We will consider here shifts of one dimensional sig- An arbitrary continuous-time signal f(t) from this space 
 

nal, which can be extended to global planar shifts of can be expressed as  
 

images in the image plane.    
 

This paper is structured as follows: The multichannel L1   
 

sampling problem  with unknown offsets is formulated f(t) l   l (t) 
 

 

mathematically as a set of polynomial equations in Sec- (1)  

l0  
 

tion 2. Section 3 gives the general multichannel sampling.   
 

   
 

Section 4 describe the multichannel sampling as a set of 
Where  l  is the l-th expansion coefficient of f(t) in the L- 

 

polynomial equations, gives an overview of Groebner ba- 
 

sis theory, and more particularly the main ideas that we dimensional basis  . Possible examples of spaces with 
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Figure 1. Classification of sampling methods. Sampling methods can be divided into uniform and  

non-uniform methods. The non-uniform sampling methods can be subdivided depending on 
whether the locations are known and whether the samples are grouped in uniform sets with only 

unknown offsets. In super-resolution, we are interested in multichannel sampling methods with 
unknown offsets. 
 
 
 
 
 
 
 
 
 
 

 

a 
 

b 
  

 

  c  

    
 

 
Figure 2. Illustration of the different sampling methods. (a) Uniform sampling. (b) Nonuniform 

sampling. (c) Multichannel sampling. 
 

 
associated bases include truncated Fourier series, wave-
lets, splines, etc.  

Assume now that we sample f(t) at times  , resulting in 
the sampled signal x(n): 
 

( (n)) x(n) = f 
(2)   

  
Sampling methods can be classified into different 

categories, according to the way the sampling times  are 
chosen (Figure 1). A recent overview of sampling 
methods is given by Unser (2000) . If the samples are 
taken uniformly, at a constant rate N, we have uniform 
sampling (Figure 2(a)): 
 

  (0 1  2 
... N - 1 

) (3)  

N 
  

 

  NN  
 

 
The sampled signal can be written as 
 
  n  

 

for 0 n < N. f  x (n) =  
 

   

  N 
(4)      

 

 
This is the standard sampling setup as it is most often 

 

 
used, and as it is also presented in the sampling theorem 
by Whittaker (1915), and Shannon (1948).  

When the samples are not chosen uniformly, the sam-
pling methods are logically called non-uniform (Figure 
2b). Among the non-uniform sampling methods, a dis-
tinction needs to be made between methods where the 

sampling instants  are known (Almansa, 2002; Marvasti, 

2001; Strohmer, 1997) and other methods where the 
sampling locations are unknown. If the sampling locations 
are unknown and completely arbitrary, the problem can-
not be solved. This can be shown using a simple coun-
ting argument. Assume that the signal to be reconst-
ructed has L unknown parameters. For every additional 
sample, there is also an additional unknown (its location). 
Therefore the number of unknowns is always larger than 
the number of measurements, and this problem is un-
solvable. However, for discrete signals, where the samp-
ling locations can only take a finite number of values, a 
combinatorial solution can be found, as described by 
Marziliano and Vetterli (2000). 
 
General multichannel sampling 
 
An important subset of the non- uniform sampling met-
hods is formed by multi channel sampling methods. In  
divided into M sets of uniformly spaced samples m . 
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Figure 3. Illustration of the different variables with M = 2 and a Fourier basis. (a).Time domain representation of  

the signal f(t) and its sets of samples y0(n) (—) and x1(n) (– –). (b) Frequency domain representation of the 

absolute values of the signal spectrum (—) and its aliased copies after sampling (– –). 
 
 
 
these methods, the set of sampling instants  can be 

Each of the sets of samples  m is uniform, but the differ-  
ent sets have an arbitrary number of sets tm (Figure 2c). 

Note that tm is expressed in samples. In such a case, the 
m-th set of samples can be written as 
 

n  t 
m  L1 n  t 

m   
 

xm(n)= f( m ) = f    l   l 
 

 , for 0  n < N  (5)  

N 
 

N 
 

 

   l0     
 

 
Papoulis described a solution for multichannel sampling 

with known sampling locations (Papoulis, 1977). He 
showed that a band limited signal can be perfectly 
reconstructed from M sets of samples that are uniformly 
sampled at 1/M the Nyquist sampling rate. This result 
was extended by Unser and Zerubia in their generalized 
sampling approach [Unser and Zerubia, 1997a, b) . The 
problem with multiple sets and unknown sampling loca-
tions was solved for discrete-time signals by Marziliano 
and Vetterli (2000). They developed a combinatorial met-
hod to compute the discrete offsets between the different 
sets of samples. In this work, we will study the conti-
nuous-time case: multichannel sampling with unknown, 

real-valued offsets tm.  
Using vector notation, (5) can be written more 

compactly as 
 

xm =   tm (6) 
 
In this equation, xm is the N × 1 vector containing the m -

th uniform set of samples, and is the L×1 vector of  
expansion coefficients. The N ×L matrix   tm  contains  
the sampled basis functions that are uniformly sampled 

with an offset tm.  
Now, all the sets of samples ym are combined into a 

single vector y and similarly the basis matrices. tm are 

 
 
 

combined into t , with t = (t0 t1… tM-1) denoting the offset 

vector. This can be written as; 
 

 x 
0 
   t     

 

      0    
 

 x1    t1    
 

y =.  =.   t (7) 
 

           
 .

   
.
     

 

           
 

x
 M-1    tM 1   

 

The matrix t  has size MN × L. Assuming that the 
 

total number of samples is larger than or equal to the 
number of expansion coefficients, or MN L, this set of 
equations is in general well-or over-determined if t is 
known. If, additionally, 
 

MN  L+M-1, (8) 
 
the number of equations is also larger than or equal to the 
number of unknowns (L expansion coefficients and M-1 
offsets), and it should be possible to remove the uncertainty 
of the unknown offsets. As we will show in the next sections, 
these additional equations allow us in general to compute 

the unknown offsets. Note that the challenging part of the 
problem is that it is a nonlinear problem in the unknown 
offsets and expansion coeffi-cients. In summary, the most 
important variables in this reconstruction problem are listed 

here (Figure 3). N: the number of samples in each set xm. x 

m: the length N vector of the m-th set of samples. L: the 

number of unknown  
expansion coefficients. : The length L vector of the ex-

pansion coefficients l to be reconstructed. M: the num-  
ber of sets of samples. t: the length M vector of the off-

sets tm between the different sets of samples. 
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The unknown variables are the expansion coefficients 

and the offsets t. We assume that all the other varia-bles 

are known. This is evident for the sets of samples xm, the 

number of samples per set N and the number of sets M, 
as they form the input of the problem. We will also require 
that the number of signal coefficients L, or at least an 
estimate for L, is available. 
 
 
Multichannel sampling as a set of polynomial 

equations 
 
Using the setup from section 3, we can write the sample 

vector as in (7): 
 

y =  t   . (9) 
 
We illustrate with an example for second order poly-
nomials like in Example (1). Now we fill in the signal 
parameters for a specific signal.  

In the above example, we obtain a set of nonlinear 

polynomial equations. The equations are linear in the  
unknown signal coefficients . Thanks to the specific cho-

ice of a polynomial basis { l (t) = t
l
}, the equations are 

polynomials in the offsets t. Note that for an arbitrary 

basis { l (t) }, this is not valid. However, for certain ba-  
ses, we can rewrite the equations (7) as a set of poly-
nomial equations using a change of variables. This is  
possible when the basis is a set of functions   l (t) = h(t)

l
,  

with h(t) an invertible function. 
Probably  the  most  important  and  practically  useful  

example of such a basis is when h(t) = e 
j2l

 , that is, the 

Fourier series. In fact, consider the case of a complex 
signal of the form 
 

k               
 

f(t) l   l (t)  (10)       
 

lk               
 

With   l (t) = e 
j2lt

 . The samples are given by 
 

n  t 
  

 
k     j2lt m  

 

m l W 
nl     

 

    
 

xm(n)= f 
   

 

 

e  N for 0  n < N, 
 

 

N 
   

 

     tk        
 

(11)             
 

   j2         j2tm   
 

With W  e N . By setting zm   e 
N

   , we obtain 
 

n  t m 
 k        

 

l W 
nl  l     

 

xm(n)= f 
     

 

 

z 
 

(12) 
  

  

N 
  m  

 

     t k        
 

 

        

We multiply (12) with zk to eliminate negative expo- 
 

      m    
 

nents:         
 

z 
k 

  n  t  
 k   

 

 

zk m l W nl zlk .  (13) 
 

 

 

xm(n)= f   

  

m N 
  

 

  m    t k m  
 

 
For each sample, this can be rewritten as a polynomial 

constraint 
 

k  
lk 

   
 

PnN+m=l W 
nl k 

xm(n) = 0. 
 

 

 z m - z m (14) 
 

tk      
 

 
In this equation, the unknowns are the signal para-

meters l and the offset dependent variables zm. As in  
Example 1, the equations are linear in the signal para-

meters and polynomial in the offset variables zm. We will 

now introduce Groebner bases and Buchberger’s algo-
rithm, which provide an elegant method to solve such a 
set of polynomial equations. 
 
 
Groebner bases 
 
We present here the main results related to our multi-
channel sampling problem and we refer to Cox et al. 
(1996) and Buchberger (Buchberger, 2001a b) for a com-
plete presentation of algebraic geometry and Groebner 
bases. This section is intended as a quick introduction 
and overview of key results that are necessary to our 
solution method. It can be skipped by readers familiar 
with Groebner bases. 
 
 
Affine varieties and ideals 
 
We consider polynomials in the n complex variables, 

y0,…, yn-1. A polynomial p can then be written compactly 
as 
 

p    a d y
d
 a d  C 

(15)  
d  

 

   

 
Where the sum is over a finite number of n-tuples d = (d0,…,dn-

1) and x 
d
 is a compact notation for y

d
0

0 ,..., y
d
n

n
-1

-1 .  
Each term of the sum in (15) is called a monomial. In the 
following, we will denote C[y0,…, yn−1] the set of 
(complex) polynomials in the variables y0,…, yn−1.  

The basic objects of algebraic geometry are affine va-

rieties: 
 
Definition 5.1.1 (Affine Variety): Consider the 

polynomials p0,…,ps-1 in the n variables y0,…,yn-1 

 C .Then we set, 



 

V(p0,…,ps−1) =  {(c0,…,cn-1)   C
n
 :  pi(c0,…,cn-1)  =  0, 

 0  i  s }. (16) 
 
We call V(p0,…,ps−1) the affine variety defined by 

p0,…,ps−1. The elements of an affine variety are the 

points for which the polynomials p0,…,ps−1 are all zero.  
The determination of the affine variety is trivial in the 

linear case, since the polynomial pi has the simple form 
 
pi(y0,…, yn−1) = ai0x0 + . . . + ai(n−1)yn−1 + bi , I = 0, . . . , 

s-1 (17) 
 
and the points of the variety V(p0,…,ps−1) are those that 

satisfy the system 
 
Ay + b = 0, (18) 

 

With {A}i,j = aij and b = (b0,…,bs−1)
T
 . The solution can be 

easily computed by using Gaussian elimination. Recall  
that Gaussian elimination consists in computing linear 
combinations of the rows of (18) in order to remove 
progressively the variables. The method is based on a 
certain ordering of the variables. For example, with the 

ordering x0, y1,…,yn−1, we obtain a system 
 

           

A y  b  0    (19)  

           

The i-th row of A has the form  

 - - -  

(0 ...  0 a iji  a 
ij

 i1  a ijn ) (20) 
 
The leading zeros in each row correspond to the 
positions of the variables that have been eliminated from 
the previous equations. Therefore, we have (possibly with 
an initial reordering of the equations) 
 
j 1 < j2 < . . . < jl < n, (21) 
 
and the rows l+1 to s are all zero. That is, at least one of 
the variables is eliminated at each step (and possibly 

more than one). Note that, after the l-th equation, all the 
 
      

variables   are eliminated. If bl   ...  bs-l   0, 
      

rank (A b)  rank(A) =  l  and the system admits  a 
       
solution. The solution of the system is obtained by back 

substitution. 
 
The procedure of Gaussian elimination can be extended 

to the case of polynomial equations. This extension is 
known as Buchberger’s algorithm and the set of equa- 

                                  
 
 

 
tions obtained after elimination is called a Groebner bas-
is. In order to give an overview of the algorithm, we recall 
the theoretical background and show the analogy with 
Gaussian elimination. We refer to the bibliography for the 
details and formal proofs.  

As in the linear case, we need to define an ordering of 

the terms of (15), that is, the monomials of y0, . . . ,yn-1. 
Since the variables may appear with different exponents, 
there are different ways to order monomials according to 
the variables and the exponents. A common choice is 
lexicographic (lex) ordering. 
 
 
Definition 5.1.2  (Lexicographic ordering):  Let d  = 

 

(d0,…,dn−1) 
      

 

and d  (d0 ,...,dn-1 ) be two  n-tuples repre- 
 

senting positive integer exponents of the monomials y
d
, 

y
d
 . We say that d > lex d if, in the vector difference d- d  

Z
n
, the left- most nonzero entry is positive. We will write 

y
d
 > lex y

d
 if d > lex d .  

Note that, next to the type of ordering, we also need to 
define the order between the different variables. In the 
following, we will assume that the terms of each poly-
nomial are ordered in descending order according to lex 

ordering, and with y0 > y1 > . . . > yn-1. We define the 
multidegree of a polynomial p, multideg (p) as the largest 
exponent of the monomials of p according to the lex 
ordering. We call leading term, LT(p) the term of p with 
the largest exponent.  

The total degree of a polynomial is defined as the maxi-

mum sum of the exponent vectors d of its terms. 
 
Definition 5.1.3 (Ideal): A subset I C[x0,…,x n-1] is ideal 

if it satisfies: 1. 0 I. 2. If p, q I, then p + q I. 3. If p I 

and a C[y0,…,yn-1], then ap I. 
 
If p0,…, ps-1 are polynomials, then we set  
 s1 

,..., yn1 
 

 

I = (p0,…,ps-1) = ai pi : ai  Cy0  
 

 i0   
 

(22)    
  

We call I the ideal generated by p0,…,ps-1. 

 
The ideal membership problem 
 
A key problem in algebra is to determine whether a given 
element p of a ring belongs to a given ideal I or not. In 
terms of polynomials, the problem is equivalent to testing 
if a given polynomial p can be written as a linear com-

bination of the polynomial generators of I, p0,…,ps-1, 

using polynomial coefficients a0,…,as-1. Such a problem 
is known as the Ideal Membership Problem.  

If we think of an ideal generated by a single polynomial 
in one variable, the problem has a simple solution. In fact, 
we can apply the algorithm of polynomial division and 
write p as: 

005      Afr. J. Physics 
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p = a0p0 + r. (23) 
 

The quotient a0 and the remainder r are uniquely deter-

mined under the condition that deg(r) < deg(p0). In this 

case, the ideal membership problem has a simple solu-

tion: if r = 0, p belongs to p0  , otherwise not.  
In the case of multiple polynomials in multiple variables, 

we can extend the algorithm of polynomial division. The 

goal is to write p as 
 
p = a0p0 + . . . + as-1ps-1 + r. (24) 
 
The division algorithm consists in considering the mono-
mials of p in decreasing order. For each monomial, if the 
leading term of one of the pi’s is a divisor, then the cor-

responding quotient ai is updated together with the rem-
aining monomials of p. Otherwise, the monomial is mov-
ed to the remainder r. 
 
Theorem 6.1 Fix a monomial order and let P = (p0,…,ps-

1) be an ordered s-tuple of polynomials in y0, . . . ,yn-1. 
Then every polynomial p can be written as in (24), where 
either r = 0 or r is a linear combination of monomials, 

none of which is divisible by any of LT(p0),…,LT(ps-1). 
Further-more, we have 
 

multideg(p)  multideg(aipi), i = 0,…,s-1. (25) 
 
A crucial point of the algorithm is that the result of the 
division depends on the order that we consider for the 

divisors p0,…,ps-1. 
 
Definition 6.2 (Groebner basis). Let G = {g0, . . . , g u-1} 

be a basis for the ideal I. If for all p  I. the remainder of 

the division p
G

 = 0 then G is called a Groebner basis for I. 
 
Theorem 6.3. (Hilbert Basis Theorem). Every ideal I of 
the ring of polynomials of n variables has a finite 

generating set. That is, I = (g0,…,gu-1) for some g0,…,gu-1 

I. In particular, it is always possible to choose g0,…,gu-1 
so that they form a Groebner basis. 
 

 
Buchberger's algorithm 
 
The key step of Gaussian elimination was to combine two 
rows of the matrix (that is, two equations) in order to can-
cel the entry corresponding to the variable of highest ord-
er. This concept is extended to polynomials by introdu-
cing S-polynomials. 
 
Definition 7.1 (S-polynomial). Let a0, a1 be two non-zero 

polynomials in y0,…,yn-1. If multideg (a0) = d and multideg  
(a1) = d , then let d = (d ,…,d n−1), where d i = max(di, d i). 
The S-polynomial of a0 and a1 is defined s the linear 
combination. 

 

     

S(a0, a1) = 
yd

" 
a 0  

yd
" 

a1 (26) 
 

 

LT(a 0 ) LT(a1 )  
 

     
 

 
Theorem 7.2 Let I be a polynomial ideal. Then a basis G 

= {g0, . x . . , g u-1} is a Groebner basis for I if and only if, 

for all pairs i j, the remainder on division of S(gi,gj) by G 
(listed in some order) is zero.  

There is a main difference between the linear and the 
polynomial case when we combine equations. In the 

linear case, if we combine a0 and a1 we obtain an equa-  
tion of the form  

h = ca0 + da1, c,d  C. (27) 
 
and this equation can be used to replace a0 or a1, i.e. 
 

a 0 ,a1  = a 0 , h = h,a1  . (28) 
 

In the polynomial case, equations are combined using 
polynomial coefficients, that is, the terms a and b are 

polynomials in the variables y0,…,yn-1. Since the set of 
polynomials has the structure of a ring, it is not always to 
find an inverse of the coefficients. This means that, for 

example, it is not always possible to compute a1 from a0 
and h. For this reason, to construct a Groebner basis, 
one has to increase initially the number of elements of the 
basis. Such an extension ends when the conditions given 
by Theorem 7.2 are satisfied. This algorithm is due to 
Buchberger and is given in the following algorithm. 
 
Algorithm 1: Buchberger’s algorithm for the computation 
of a Groebner basis.  
Let I = (a0,…,as-1) 0 be a polynomial ideal. Then a 
Groebner basis for I can be constructed in a finite number 
of steps by the following algorithm: 
Input: A = (a0,…,as-1) 
Output: a Groebner basis G = (g0,…,gu-1) for I, with A  G  
G := A 
Repeat 
G := G 
For each pair (a, q), a q in G do 

S:= S(a, q)
G
  

If S  0 then G: = G  S  
until G = G . 

Algorithm 1 is not a very practical way to compute a 
Groebner basis. 
Several improvements are possible. Moreover, Groebner 
bases computed in this way are often bigger than neces-
sary. For this reason, unneeded generators are elimina-
ted by using Theorem 7.2 or similar tests. 
 
 
Solution of polynomial equations 
 
We can now show that a Groebner basis corresponding 

to a system of polynomial equations and built using lex 
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ordering simplifies the system and allows to compute the 
solution by back substitution. Remember that we defined 
the ideal I as the set of all polynomials that can be 
derived from the initial set using polynomial coefficients. 

We can also define the elimination ideal Ik as the set of all 
polynomials that can be deduced from the original system 

and contain only the variables yk,…,yn−1, 
 

Ik = I   C[yk,…,yn-1]. (29) 
 
If we can find a basis for each one of the sets Ik, k 

=1,…,n-1, we can determine the solutions of the original 
system using back substitution. In fact, we clearly have 

that for any k 1, Ik+1  Ik. Therefore, if we have a solution 

of the system of equations associated to Ik+1, we can 

extend it to the system 
 
 
Multichannel sampling using groebner bases 
 
Instead of computing Ik we compute yk. This can be done 

by computing the zeros of a polynomial in the variable yk. 
An important property of Groebner bases is that they 

solve easily the problem of determining the ideals Ik, k = 
1,…,, n-1. Namely, the Groebner bases of all the ideals 

Ik, k = 1,…,n-1 can be determined from the Groebner 
basis of I. 
 
Theorem 8.2 (Elimination Theorem). Let I  [y0,…,yn-1] 

be an ideal and let G be a Groebner basis of I with  
respect to lex order where x0 > y1 >…> yn−1. Then, for 
every 1 k < n, the set 
 

Gk = G   C[yk,…,yxn−1] (30) 
 
is a Groebner basis of the k-th elimination ideal Ik. 

 
Using this theorem, we can compute the different varia-
bles from a Groebner basis using back substitution. To 
summarize, we can solve a set of polynomial equations in 
multiple variables as follows. First, we compute a Groeb-
ner basis for the ideal corresponding to the set of 
equations using Buchberger’s algorithm. The solution can 
then be obtained from this Groebner basis using back 
substitution. 
 
 
Multichannel sampling using groebner bases 
 
We can now use Groebner bases and Buchberger’s 
algorithm to solve the equations from (1). After a possible 
change of variables to write the equations in polynomial 
form, we can directly apply Buchberger’s algorithm. This 
result in a Groebner basis for the ideal is defined by the 
set of equations. The signal parameters can then be 
easily extracted from this Groebner basis using the elimi-
nation theorem. This is summarized in Algorithm 8.4. 

 
 

 
We will illustrate this algorithm with two examples for 

polynomial signals and signals described by Fourier 
series. 
 
Algorithm 8.4: Algorithm for multichannel sampling with 
unknown offsets using Groebner bases.  
1. Write out the equations from (1) describing the sam-
ples as a function of the signal coefficients. 2. If neces-
sary, perform a change of variables to convert the equa-
tions into a set of polynomial equations. 3. Compute a 
Groebner basis for the set of polynomial equations using 
Buchberger’s algorithm 4. Use back substitution to com-
pute the offsets and signal parameters from the Groebner 
basis. 5. If necessary, eliminate solutions that are not 
valid (e.g. offset values not on the unit circle in the Fou-
rier case).  

Example 1 (Polynomial signals): Consider the case 

where the basis B is given by the functions l (t) =t
l
, l =  

0,…,L- 1 with two sets of two samples (L = 3, M = 2, and 
N = 2. Consider the signal parameter vector x = (64 - 24 -

4)
T
 and the displacements t = ( 0 1/8)

T
. In this case of 

measurements would be y0 = (-4.0)
T
 and y1 = (-6 6)

T
 see 

also Figure 1). We can represent the set of solutions of 
(31) as the points of the affine variety defined by the set 
of polynomials: 
 
 0   0 1   

0 
  - 4  

 

 

0.25 
  

0.5 
     

0 
  

 

   1 
1  

   
 

 2   
0.5t1 

 = 
- 6 

 (31) 
 

 0.25t1   
1        

 

 

(0.5  0.5t 1 

)
 

2 

(0.5  0.5t1 ) 

   2   

6 

  
 

  1        
 

We can represent the set of solution of this problem as 

the points of the affine variety defined by the set of poly-
nomials. 
 

a 0    2  4 
 

a1  
1
4  0  

1
2  1   2 

 

a 2   
1

4  0 t1
2
  

1
2  1t1   2  6 

 

a 3  
1

4  0 t1
2
  

1
2  0 t1  

1
4  0  

1
2  1t1  

1
2  1   2 - 6 

 

in the variables 0, 1, 2 and t1. We fix the ordering of 

variables as 0  1  2  t1 and we use lex ordering 
 
for monomials. At the first step of Buchberger’s algorithm, 

we find that 
 

L(a0 , a1 )  4 0 - 2 1  2  4 
2
2  ( - 2 1 - 4 2 )a 0 16a1 , 
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Figure 1. Second degree polynomial signal used in Example 1. The signal f(t) = 

64t
2
-24t is sampled with two sets of two samples y0 = (-4 0 )

t
 and y1 = (-6 6 )

t
 with 

offset t1 = 1/4. 
 
 

L(a0 ,a2 )   0 t1
2
 - 1 1  2 t1   2

2
  6 2  (- 

1
 

1t1   2 - 4t1
2 - 2)a0  4t1

2
a1 - 2 1t1 16t1

2
  8, 

   2      2       

L(a 0 ,a 3 )  - 
1

  0  2 t1 - 1 0  2  0 t1
2
 - 

1
  1  2 t1 - 1 

1  2   2
2
  6 2  

  2    4    2  2    

   (- 
1
 0 t1 - 1 0 - 

1
  1t1 - 

1
  1 -  2 - 4t1

2
 - 8t1  6)a 0  (4t1

2
  8t1  4)a1 

  2   4  2  2       

  - 2 1t1
2
 - 2 1t1 16t1

2
  32t 1 - 24,     

L(a1 , a 2 )  
1

  1t1
2 - 

1
 
1t1  

1
  2 t1

2 - 
1
 2 - 

3
 

1
 (t1

2 -1)a 0  
1

  1t1
2 - 

1
  1t1 - t1

2 - 
1
 

  8  8   4  4 2 4  8 8 2  

L(a1 ,a 3 )  - 1 0 t1 - 
 1  

0 
  

1
  1t1

2 - 
1

  1t1 - 1 1  1 
2 t1

2
 - 

1  
2 

3
   

 

8 
    

8 4 
  

 

    16     8 8    4 2   
 

  ( 
1

 t1
2  

1
 t1 )a 0  (- 

1
 t1 - 

1
 )a1  1 1t1

2  
1

  1t1 - t1
2
 - 2t1  3 , 

 

  4   2      2 4  8   8   2  
 

L(a2 , a3 )  - 
1

  0 t1 - 1 0  1 1 12  (2t1 1)a0 - (2t1 1)a1   1t1 - 8t1  8 
 

 2   4    2            
 

 
Therefore, we add the remainders that are non-zero to 

the basis: 
 

a 4   L(a 0 ,a 2 )
*
  - 2 1t1

2
  2 1t1 16t1

2
  8, 

 

a5   L(a 0 ,a3 )
*
  - 2 1t1

2
  2 1t1 16t1

2
  32t1 - 24 

 

a 6  L(a 2 ,a3 )
*
   1t1  8t1  8  

 
 

The remainders of S(a1,a2) and S(a1,a3) are not added, 

because they are the same as polynomials a4 and a5, 
respectively. Following the same procedure, in the 

second iteration, we find that only S(a2,a6) and S(a4, a6) 
give a distinct, non-zero remainder. We add the 
polynomials 
 

a 7   L(a 2 ,a 6 )
*
  - 2 1  48 

 

a8   L(a 4 , a 6 )
*
   32t1  8 

 
to the basis. In the following iteration all remainders are 

zero and by Theorem 7.2 we conclude that a0, . . . ,a8 is a 
Groebner basis. Applying again Theorem 7.2 we can try 
to reduce the elements of the basis. In this case, the 

coefficients a2, a3, a4, a5, a6 can be removed and the 

final basis is given by {a0, a1, a7, a 8}. In order to apply 
the elimination theorem, we rename the elements of the 
basis as: 
 

G 0   
1
4  0  

1
2  1   2 , 

 

G1 2 1  48, 

 

G 2    2  4, G 3   32t1 - 8, 

 

The elimination ideals are I1 = g1 ,g 2 , g3  , I2 = g2 , g3   
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and I3 = g3  .The solution of the problem can be obtain- 
 
ed by computing the points of the affine variety asso-

ciated to I3 and extending it by back substitution to I2, I1 
and I. We easily find that the unique solution is given by: 
 
t1 = 14 ,   2 = −4,   1 = −24, and   0 = 64. 

 
The procedure described in the above example can be 
applied to any multichannel sampling problem in the 
polynomial space H. For any value of the variables L M, 
and N, the equations in (6) form a set of polynomial 
equations and we can therefore compute the parameter 
values by calculating a Groebner basis for the corres-
ponding ideal. Similarly, the same algorithm can be app-
lied to Fourier series, using the change of variables given 
in Section 3. This is a very interesting case from a prac-
tical point of view, as signals and images are often band-
limited or can be considered to be so. 
 
 
Conclusions 
 
In this paper, we have presented a method to reconstruct 
a signal from multiple sets of unregistered, aliased sam-
ples using Groebner bases. First, we have shown how 
multichannel sampling with unknown offsets can be writ-
ten as a set of polynomial equations. This was shown 
both for a polynomial signal and for a signal described by 
its Fourier series. Next, we applied Buchberger’s algori-
thm to compute a Groebner basis for the ideal corres-
ponding to this set of equations.  
From a Groebner basis, we can easily derive the unkno-
wn signal parameters. We presented an adaptation to our 
algorithm in the case of noisy measurements. Grobner 
bases are then computed for critical subsets of the offset 
polynomials. Finally, some complexity issues are discus-
sed, and more efficient method is presented that compu-
tes the linear signal parameters first, such that a Groeb-
ner basis has to be computed only for a much smaller set 
of equations in the unknown offsets. Even after this opti-
mization, such methods memory is requirements. There-
fore, we only applied them to one-dimensional signals in 
our simulations. 
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