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The objective of the present study is to develop an efficient protocol for shoot and plant regeneration 
using five commercial canola cultivars grown under the Egyptian agricultural conditions. The 
regeneration efficiency from hypocotyl explants was examined. The data indicated that embryonic calli 

were formed within two weeks in the presence of 1 mgl
-1

 2,4-D. Adventitious shoots emerged from the 

embryonic callus in the presence of 4.5 mgl
-1

 BA. The cultivars showed a varied response to shoot 
regeneration. Regeneration frequency was high in the cultivar Sarow -4 (68%) followed by Masrri L-16 
(64%) compared with the other cultivars tested. Hypocotyl explants from the cultivars Sarow-4 and 
Semu-249 were inoculated and co-cultivated with Agrobacterium tumefaciens strain LBA4404 harboring  
a binary vector pBI-121 containing the neomycin phosphotransferase-II gene (NPT-II). The resulted 
putative transgenic plantlets were able to grow under knanamycin containing medium. The stable 

integration of the NPT-II gene into the plant genomes was tested by PCR using NPT-II -specific primers. 
The GUS gene expression can be detected only in the transgenic plants. The reported protocol in the 

present study is repeatable and can be used to regenerate transgenic canola plants expressing the 
genes present in A. tumifaciens binary vectors. 
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INTRODUCTION 

 
Canol (Brassica napus L.) is considered as the most 
important source of vegetable oil and protein-rich meal 
worldwide. It ranks the third among the oil crops, 
following palm oil and Soya oil and the fifth among 
economically important crops, following rice, wheat, 
maize and cotton (Sovero, 1993; Cardoza and Stewart, 
2003). There are increased domestic and export market 
opportunities for canola oil that can be realized through 
the development of high-oleic acid canola to replace 
saturated palm oil in food service applications (Spector, 
1999; Stoujesdijk et al., 2000). Additionally, high-oleic 
acid oils are more nutritionally beneficial because oleic 
acid had cholesterol-lowering properties, whereas  
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saturated fatty acids tend to raise blood cholesterol levels 
(Stoujesdijk et al., 2000). On the other hand, in Egypt 
there are agricultural opportunities to increase canola 
production by expanding into the new reclaimed regions. 
Therefore, B. napus has become an object of extensive 
tissue culture studies and breeding. 

Cell and tissue culture relating to variability and 
selection efficiency are two essential components of 
molecular breeding (Lichtenstein and Draper, 1985). 
Genetic variation in canola is required to breed cultivars 
that are high yielding, and resistant to several biotic and 
abiotic stress conditions. It is well known that 
improvement of plant through conventional breeding 
methods is slow, time-consuming and labor-intensive. 
Non-conventional genetic improvement programs based 
on tissue culture and molecular genetics is essential as a 
complement to standard breeding (Lichtenstein and 
Draper, 1985). 



 
 
 

 

Since the early observation by Skoog and Miller (1957) 
that the balance of auxin and cytokinin in the culture 
medium regulates organogenesis, much progress has 
been made in identifying factors that control plant 
morphogenesis. These regulatory factors include both 
naturally occurring and synthetic plant growth substances 
as well as various environmental stimuli (Lakshmanan et 
al., 1997). In earlier studies, attention had been focused 
on determining the requirements of various plant growth 
substances and mineral nutrients for different 
organogenic processes (Murashige, 1974; Gamborg et 
al., 1977). More recently a number of investigations on 
organogenesis have been conducted from a physiological 
perspective to analyze various cellular processes 
associated with organogenesis (Thorpe ,1993).  

Regeneration in B. napus is highly variable and 
genotype specific. Several papers have reported 
regeneration of shoots from seedlings or mature plant 
derived explants of B. napus (Dunwell, 1981). To date 
organogenesis has been achieved in a variety of explants 
such as stem sections (Pua et al., 1991), stem thin-cell 
layer (Klimaszewska and Keller, 1985), leaf discs 
(Dunwell, 1981), roots (Sharma and Thorpe, 1989), 
cotyledons (Moloney et al., 1989) and hypocotyls (Phogat 
et al., 2000).  

It is well documented that efficient Agrobacterium-
mediated transformation methods require a reliable and 
efficient callus induction and plantlet regeneration 
procedures (Riemenschiender et al., 1988). The aim of 
this study was to develop a procedure for the 
transformation and regeneration of viable shoots from 
hypocotyl explants of commercial Egyptian canola 
varieties. Five commercial cultivars of canola were 
successfully regenerated. Differences in the regeneration 
capacity among the cultivars were observed. The system 
described here can be used as a basis for the future 
development of commercial scale production of 
regenerated canola plants. In addition, the co-
transformation of a foreign gene with T- DNA in the Ti-
plasmid of Agrobacterium tumifaciens leads to an 

improvement of plant properties. 

 
MATERIALS AND METHODS 
 
Plant material 
 
Three Egyptian commercial canola cultivars namely, Sarow-4, 
Masrri L-11, Masrri L-16, and two German cultivars, Semu-304 and 
Semu-249, were used. Canola seeds were surface sterilized by 
immersion in 70% ethanol followed by immersion in 3% (v/v) 
sodium hypochlorite, and rinsed in sterile distilled water. The 
sterilized seeds were germinated in flasks on 0.8% agar (w/v). The 

cultures were incubated at 25C under a 16/8 h day/night 
photoperiod (1000-Lux). 

 
Shoot induction medium 
 
Hypocotyl segments (0.5 cm in length) were excised from 6-day-old 

canola seedlings. The explants were transferred to the callus 

induction medium containing MS salt, 3% (w/v) sucrose, B5 

 
 
 
 

 
vitamins, 1% (w/v) agar in addition to 1 mg/l 2,4-D. Two weeks later 
the explants were transferred onto shoot induction (MS) medium 
(Murashige and Skoog, 1962), supplemented with BA at graded 
levels (0.0, 2.25, 4.50, 7.25 and 9 mg/l), pH 5.8. Each plate 
contained 10 segments and all the treatments were performed with 
5 replications. The plates were sealed with parafilm and incubated 
at 25°C under a 16/8 h light/dark photoperiodic regime (1000-Lux). 
The explants were sub-cultured weekly on corresponding medium 
freshly prepared. Data was collected on the following traits: callus 
induction and the shoot induction frequencies (CIF and SIF) were 
calculated as follows: 
 
 number calli-producing explants 
CIF = X 100 
 total number explants in the culture 

 number shoots-producing explants 
SIF = X 100 
 total number explants in the culture  

 

The LSD analysis was performed using the Analyse-it software LTD 

(PO box 77, Leeds, LS125XA, UK) according to Maxwell and 

Delaney (1989). 

 

Elongation and acclimatization 
 
Mature embryos were selected for germination based on their size. 
Plantlets (3.0 cm in height) were transferred to half strength MS 
medium in 200 ml flasks. The plantlets which showed a well-
developed root system were transferred to sterilized soil in 15 cm 
plastic pots and irrigated with one tenth MS solution in a humid 
chamber at 25°C, under a 16/8 h day/night cycle. After 
acclimatization the plants were grown under greenhouse conditions. 
The plant regeneration frequency (PRF) was calculated based on: 
 

 
number plants-producing shoots x 100 

PRF =  
total number of shoots initiated in the culture 

 
 
 
Agrobacterium mediated gene transfer in canola 
 
The A. tumifaciens strain LBA4404 harboring the binary vector pBI-
121 (Jefferson et al., 1987) was grown overnight in 30 ml of LB 
medium containing 50 mgl/l kanamycin sulfate (Sigma-Aldrich, 

Japan) at 28C, and then collected by centrifugation at 1120 x g for 
5 min. The pellet was re-suspended in MS medium containing 100 

M acetosyringon. The hypocotyl segments (0.5 cm in length) were 
prepared from 6-day- old canola seedlings (cultivars: Serow- 4 and 
Semu-249) and then immersed in the bacterial suspension for 5 
min. Thereafter, the segments were blotted on sterilized filter paper, 
placed onto a co-cultivation medium, which consisted of growth 
regulators free MS medium (Murashige and Skoog, 1962) 

containing 100 M acetosyringon, and then were incubated under 
dark conditions. 

After co-cultivation for three days, the explants were transferred 
to the callus induction medium containing 1 mg/l 2,4-D, 500 mg/l 
cefotaxime and 50 mg/l kanamycin sulfate. Two weeks later the 
explants were transferred onto shoot induction medium 
supplemented with 4.5 mg/l BA and 500 mg/l cefotaxime in addition 
to 50 mg/l kanamycin sulfate. The plates were sealed with parafilm 
and incubated at 25°C under a 16/8-h light/dark photoperiodic 



 
 
 

 
Table 1. Shoot regeneration frequencies on the meristematic end of the hypocotyl of five canola cultivars. 

 

Genotype No. of Callus Callus No. of shoot No. of Regeneration 
 cultured inducing induction % initiations regenerated % 
 explants explants   Plants  

Sarow-4 600 599 99.8 467 320 68 

Masrri L 11 600 600 100 396 191 48 

Masrri L-16 600 600 100 180 116 64 

Semu-304 600 600 100 363 161 44 

Semu –249 600 599 99.8 288 152 52 

LSD 0.05  -  14.76 11.93  
 
 
 
regime (1000- Lux). The explants were sub-cultured weekly on 

corresponding freshly prepared medium. 

 

PCR analysis 
 
In order to confirm the stable integration of the T-DNA into the plant 
genome, the putative transgenic plantlets were analyzed by PCR 
using NPT-II gene and 35 S-promoter specific primers. DNA 
samples were isolated from both of the transformed and non-
transformed (control) plantlets according to the method described 

by Rogers and Bendich (1985). The reaction mixture (20 l) 

contained 10 ng DNA, 200 M dNTPs, 1 M of each primer, 0.5 
units of Red Hot Taq polymerase (ABgene Housse, UK) and 10-X 
Taq polymerase buffer (ABgene Housse, UK). Samples were 

heated to 94C for 5 min and then subjected to 35 cycles of 1 min at 

94C; 1 min at 56C and 1 min at 72C. PCR products were 
separated by (2%) agarose gel electrophoresis and visualized with 
ethidium bromide. The forward and reverse primers for the NPT-II 
gene were 5`-CGCAGGTTCTCCGGCCGCTTGGG TGG-3` 
(position: 24-49) and 3`CTGAAGCGGAAGGGACTGGCTGCT-5` 
(position: 254-277). The sequences of the primers for the 35S-
promoter detection were; 5`AAAGGAAGGTGGCTCCTACAAAT-
3`and 3`CCT CTCCAAAT GAA ATGATCC-5`, respectively. 

 

Histochemical GUS assay 
 
The histochemical assay to screen for the expression of -
glucurodinase (GUS) activity in transgenic canola plants was 
carried out according to the method of Jefferson et al. (1987). For 
analysis, leaf tissue was incubated in a reaction buffer containing 
12.5 mM K3 Fe (CN)6, 12.5 mM K4Fe (CN)6, 20% methanol, 1% 
Triton X-100 and 38.3 mM 5- bromo-4-chloro- 3-indolyl glucuronide 
as a substrate for the enzyme. The tissue was incubated in staining 

solution at 37C for 24 h and the developed blue spots were 
recorded. 
 

 

RESULTS 

 

Hypocotyl explants exhibited an initial swelling followed 
by callus formation within two weeks of incubation. It was 
noted that callus proliferation started from cut ends of the 
hypocotyls on MS medium supplemented with 1.0 mg/l 
2,4-D. In general, a high percentage of explants formed 
callus (99-100%, Table 1). No significant differences in 
callus induction between the cultivars were observed 
(Table 1). 

 

 

Hypocotyl explants-derived calli were placed on 
regenerating media containing various concentrations of 
growth regulators. The nodular structures developed into 
shoot buds when the embryogenic calli were sub-cultured 
in the medium supplemented with BA within two weeks. 
The somatic embryos directly emerged from the body of 
the explants or indirectly germinated from the embryonic 
callus (Figure 1). Figure 1B depicts the different 
developmental stages of the plantlets.  

The data in Figure 2 indicate that exogenous BA 
promoted shoot induction in all the cultivars, and the 
cultivars Sarow-4 and Semu-304 showed higher 
capability for production of somatic embryos at 4.5 mg/l 
BA compared with the other cultivars used.  

The initiated shoots were matured and germinated on 
half strength MS medium. The seedlings were 
acclimatized and transferred to the greenhouse. Table 1 
shows that the cultivars differed in the number of 
regenerated plants. Cultivar Sarow-4 showed higher 
regeneration percentage (68%) followed by Masrri L-16 
(64%) while the cultivar Semu-304 showed the least 
regeneration frequency (44%).  

Hypocotyl explants from the cultivars Sarow-4 and 
Semu -249 were co-cultivated with A. tumefaciens for 3 
days. After co-cultivation, the infected hypocotyls were 
placed on MS medium with low selection pressure. Under 
these conditions, the ends of the hypocotyls gradually 
initiated the formation of callus. During the process of 
selection, the successfully transformed hypocotyls 
continued to grow vigorously to produce calli, whereas 
the untransformed ones failed to form callus and 
eventually bleached and became necrotic within 3 weeks. 
Shoots were usually regenerated within 4 to 6 weeks on 
the MS medium after co-cultivation. During the selection 
culture, sub-culturing the explants with a change of fresh 
medium containing 50 mg/l kanamycin greatly reduced 
the number of escapes. The average shoot regeneration 
percentages for the two tested canola cultivars after 
Agrobacterium infection and selection were 31% and 
27%, with a total of 22 and 3 shoots produced for the 
cultivars Sarow-4 and Semu- 249, respectively (Table 2). 
It was greatly reduced when compared to the 68% and 
52% shoot regeneration from culture without the infection 
of Agrobacterium and selection with kanamycin (Table 1). 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The organogenesis process in canola. (A) Different developmental stages of somatic embryos in canola (a1: 

globular stage, a2: torpedo stage, a3: heart stage and a4: cotyledonary stage. (B) Shoot induction in canola (b1: 

hypocotyl explants, b2: embryonic callus, b3: shoot buds and b4: regenerated plants). 
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showed GUS expression while the non-transgenic did not 

show any GUS activity (Figure 4).  

 

 
Figure 2. Somatic embryo induction frequency of five canola 

cultivars under different BA concentrations. 
 
 
 

 

To confirm the presence of the T-DNA in the 

regenerated plants, all R0 plants were subjected to PCR 
analysis with the primers specific for the NPT-II gene and 

also for the 35 S-promoter. The PCR analysis indicated 
that all the regenerated plants examined showed a clear 
band corresponding to the relevant sequence of both of 
the NPT-II gene and the 35-S-promoter (Figures 3A and 
B). In the present study the kanamycin resistant plants 

 
 
 
 
 
 
 
 
 

 
Figure 3. PCR analysis confirming the transformation of T-DNA 
into canola genome. A. The stable integration of the NPT-II gene 
into the genome of the regenerated plants. B. The detection of the 
35-S-promoter in the transformed plants. Lanes 1 and 7: MW (XVI-
250 bp ladder, Roche), lane 2: non-transgenic plant, lane 3-6: 
transgenic plants.  



 
 
 

 
Table 2. Regeneration frequency ofGUS-expressing plants derived from the hypocotyl explants of two canola cultivars infected with A.  
tumifaciens LBA4404. 

 

Genotype No. of explants No of shoots No. of regenerated Regeneration GUS positive plants 

   plants %  

Sarow-4 200 70 22 31 19 

Semu –249 200 11 3 27 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Histochemical GUS assay showing gene expression in 

transgenic plant leaves (2 and 3) while no expression can be 

detected in non-transgenic plant (1).  
 
 

DISCUSSION 

 

The response of explants to culture was observed within 
one week on callus inducing medium. In general, a high 
percentage of explants formed callus. A similar result was 
obtained by Muhammad et al. (2002a). These findings 
are also consistent with Turget et al. (1998). Narasimhulu 
and Chopra (1988) reported that shoot production 
efficiency became higher when the medium was 
supplemented with higher concentration of BA (2-4 mg/l). 
Muhammad et al. (2002a) reported that the highest 
frequency of shoot regeneration was achieved on the 
medium with 2.0 mg/l BA and 0.5 mg/l IAA using 
hypocotyl-derived calli. The data indicate that exogenous 
BA promoted shoot induction and the cultivars Sarow-4 
and Semu-304 showed higher capability for production of 
somatic embryos at 4.5 mg/l BA compared with the other 
cultivars used. This finding supports the assumption that 
regeneration in canola is genotype-specific. These data 
are consistent with the findings reported by Szulc and 
Drozdowska (1997).  

The most common method used for the transformation 
of B. napus is via Agrobacterium mediated gene transfer. 
Both A. tumefaciens and A. rhizogenes have been used 
for genetic transformation. A. tumefaciens mediated 

transformation has been attempted using a variety of 
explants such as hypocotyl (Muhammad et al., 2002b; 

 
 

 

Cardoza and Stewart 2003), and thin cell layer (Ovesna 
et al., 1993).  

The efficiency of A. tumefaciens-mediated transfor-
mation technique in oilseed rape is influenced by cultivar 
specificity, donor plant age and explant type (Poulsen, 
1996). Regeneration is also markedly genotype-
dependent. The number of Brassica cultivars which have 
so far been used in transformation experiments is 
relatively limited (Poulsen, 1996). The regeneration 
protocol of the present study was efficiently used to 
produce transgenic canola plants expressing the NPT-II 
gene. The average shoot regeneration percentages for 
the two tested canola cultivars after Agrobacterium 
infection and selection were 31% and 27%, with a total of 
22 and 3 shoots produced for the cultivars Sarow-4 and 
Semu-249, respectively (Table 2). It was greatly reduced 
when compared to the 68% and 52% shoot regeneration 
from culture without the infection of Agrobacterium and 
selection with kanamycin (Table 1). These results are in 
agreement with those reported by Xiang et al. (2000). 

To confirm the presence of the T-DNA in the 
regenerated plants, we subjected all R0 plants to PCR 
analysis with the primers specific for the NPT-II gene and 
also for the 35 S-promoter. The PCR analysis indicated 
that all the regenerated plants examined showed a clear 
band corresponding to the relevant sequence of both of 
the NPT-II gene and the 35- S-promoter (Figure 3A and 
B). Kalfhill et al. (2001) used the green fluorescent gene 
(GFP) as a selectable marker to select the Bt-
transformed canola plants.  

Based on the data of the present study we can 
conclude that the reported regeneration system is 
repeatable and can be easily used to regenerate 
transgenic canola plants expressing the genes present in 
the Agrobacterium binary vector T-DNA. Using this 
regeneration and transformation protocol we can achieve 
our main goal which is the production of salt and drought 
tolerant canola plants. 
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