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Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer mortality in the world and, in certain 
parts of Asia and Africa, it accounts for about 70% of cancer deaths. Chronic hepatitis B virus (HBV) 

infection and dietary exposure to aflatoxin B1 (AFB 1) are the two major risk factors in multi factorial 
aetiology of HCC. Multiple lines of evidence indicate synergistic interaction between these two agents 
in the development of HCC. Several mechanisms of interaction have been suggested including 

activation of cytochrome P450s by HBV infection leading to the metabolism of inactive AFB1 to the 

mutagenic AFB 1-8,9-epoxide as well as the generation of reactive oxygen species by HBV and AFB1 

sensitising the cells to AFB1-induced p53 249
ser

 mutations. The poor survival rate achieved by the 
current surgical procedures and chemotherapy treatment has motivated a number of scientific 
investigations to elucidating the molecular events involved in HCC thus providing the scientific 
rationale for prevention strategies, including primary and chemoprevention approaches. Recent 
findings have implicated intracellular signalling cascades involving nuclear factor kappa B (NF-B) and 
nuclear transcription factor erythroid 2p45 (NF-E2)-related factor 2 (Nrf2) as molecular targets of a wide 
range of chemopreventive agents. The new findings thus raise the intriguing possibility that 
chemopreventives modulating these molecular targets in the liver might provide a novel therapeutic 
approach to the development of liver cancer. 
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IINTRODUCTION 

 
Hepatocellular carcinoma (HCC) accounts for 5.5% of all 
cancer cases world wide (Kensler et al., 2003) and is one 
of the most common cancers in Asia, Africa and in groups 
of Asian- and Hispanic- Americans. HCC attacks people 
at an early age in high risk zones. The highest 
occurrence and the youngest people with this disease are 
in the hyper endemic areas of China, Taiwan, Thailand 
and sub-Saharan Africa. There appears to be an 
increasing trend of HCC in these regions in recent years. 
For instance data from death certificates in Thailand from  
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1993 to 2003 reveal that liver cancer mortality in Sa Kaeo 
Province of Thailand increased from 3.1 to 26.1 per 
100,000 populations between 1993 and 2003. In Thailand 
overall rates increased from 9.0 to 19.8 per 100,000 
population between 1996 and 2003. According to 
electronic hospital records, the total number of patient 
encounters (in-patient admissions and out-patient visits) 
for liver cancer in the two main hospitals in Sa Kaeo 
Province increased by 56% (14% annually) between 
1999 and 2003. The number of cases of HCC increased 
from 42 in 2001 to 73 in 2003 (Amon et al., 2005).  

Epidemiological studies have identified chronic infection 
with hepatitis B virus (HBV) and dietary aflatoxin 
exposure as two major etiological risk factors for the 
development of HCC (Kew, 2003). The synergistic 
interaction between HBV and aflatoxins especially 

aflatoxin B1 (AFB1) has been observed in both animals 



 
 
 

 

(Bannasch et al., 1995) and humans (Lunn et al., 1997; 
Wang et al., 2001).  

Primary prevention involving vaccination for HBV in 
babies and food safety procedures to limit aflatoxin 
contaminations has proved important strategy for 
reducing HCC in developing countries. Furthermore, 

understanding of the mechanisms of AFB1-induced 
hepatocarcinogenesis has provided a scientific basis to 
reduce HCC risk (Wild and Hall, 2000) and has allowed 
other strategies such as chemoprevention with dietary 
naturally occurring agents to modulate the noxious effects 
of aflatoxins.  

The present article updates the occurrence of aflatoxins 
in foods in developing countries, reviews the recent 
advances in the molecular mechanisms of aflatoxins and 
HBV as related to the development of liver 
carcinogenesis and presents a detailed discussion on the 
preventive interventions involving the use of targeted 
chemopreventive agents that focus on the mechanism of 

action of AFB1. 
 

 

HISTORY OF AFLATOXINS 

 
Aflatoxins, a group of closely related heterocyclic 

compounds were first discovered in 1960 in England after 

the outbreaks of turkey disease that resulted in deaths 

(Blount, 1961) and of cancer development in rainbow trout 

fed on rations formulated from peanut and cottonseed meals 

(Halver, 1965). Subsequently the toxin was isolated (Vander 

Zijden, 1962). Aflatoxins are produced predominantly by 

Aspergillus flavus and Aspergillus parasiticus. Recent 

studies revealed that A. nominus and A. tamari strains are 

capable of producing the toxin (Goto et al., 1996, 1997) . 

Very recently, Ito et al. (2001) isolated another strain, A. 

pseudotamarii, capable of producing aflatoxin. At 

temperatures between 24 and  
35C and when the moisture content exceeds 7% (10% 
with ventilation) aflatoxins will grow within many 
commodities (Williams et al., 2004) . The fungi 
contaminate a vast array of dietary staples and 
agricultural products such as rice, corn, cassava, peanuts 
and spices. Most commodities in the developing countries 
are therefore easily contaminated due to the 
environmental condition, poor processing and lack of 
proper storage facilities. 
 

 

AFLATOXIN B1: TOXICOLOGY AND METABOLISM 
 

Of the aflatoxins, AFB1 is the most prevalent, the most 
occurring and also the most potent. Acute dietary 

exposure to AFB1 has been implicated in epidemics of 
acute hepatic injury (Sudakin, 2003). The liver is the 

primary site of biotransformation of ingested AFB1. The 
predominant human CYP450 isoforms involved in human 

metabolism of AFB1 are CYP 3A4 and CYP 1A2 (Figure 

 
 
 
 
 

1) . Both enzymes catalyze the biotransformation of AFB1 

to the highly reactive exo- 8,9-epoxide of AFB1 
(Guengerich et al., 1998 ). CYP 1A2 is also capable of 

catalyzing the epoxidation of AFB1 to yield a high 

proportion of endo epoxide and hydroxylation of AFB1 to 
form aflatoxin M1 (AFM1), which is a poor substrate for 
epoxidation (Guengerich et al., 1998), less potent than 

AFB1 (Wild and Turner, 2002) and generally considered 
detoxification metabolite while CYP 3A4 can also form 
AFQ1 a less toxic detoxification metabolite. CYP 3A5 

metabolizes AFB1 mainly to the exo epoxide and some 
AFQ1 (Wang et al., 1998). Polymorphism studies with 
CYP 3A5 reveal that this isoform is not expressed by 
most people and in particular about 40% of African-
Americans do not express this enzyme (Wild and Turner, 
2002). Studies with Gambian children reveal that 
Aflatoxin can cross the placenta and be transported into 
the new born (Wild et al., 1993). Thus CYP 3A7 a major 
cytochrome P450 in human fetal liver, has the capacity to 

activate AFB1 to the 8,9- epoxide (Kitada et al., 1989).  
Epoxidation of AFB1 to the exo-8,9- epoxide is a critical 

step in the genotoxic pathway of this carcinogen (Figure 
1). The epoxide is highly unstable and binds with high 

affinity to guanine bases in DNA to form afltoxin -N
7
-

guanine (Guengerich, 2001). The afltoxin-N
7
-guanine has 

been shown to be capable of forming guanine (purine) to 
thymine (pyrimidine) transversion mutations in DNA 
(Bailey et al., 1996). Studies in vitro and animal models 
as well as epidemiological studies have revealed a high 
incidence of this transversion mutation occurring at codon 
249 of the p53 tumor suppressor gene (Mace et al., 1997; 
Li et al., 1993) a region corresponding to the DNA binding 
domain of the corresponding protein (Sudakin, 2003).  

Glutathione pathway has been shown to play a major 

role in the detoxification of AFB1 (Johnson et al., 1997; 

Farombi et al., 2005 a). The AFB1 8,9 exo and endo 
epoxides can be conjugated with glutathione resulting in 
the formation of AFB- mercapturate catalyzed by 
glutathione S-transferase (GST) (Johnson et al., 1997 ). 
The exo and endo epoxide can also be converted non-

enzymatically to AFB1-8,9-dihydrodiol which in turn can 
slowly undergo a base-catalysed ring opening reaction to 
a dialdehyde phenolate ion (Guengerich et al., 1998). 

AFB1 dialdehyde can form Schiff bases with lysine 
residues in serum albumin forming aflatoxin-albumin 
complex (Sabbioni and Wild, 1991). Furthermore, 
aflatoxin dialdehyde can be reduced to a dialcohol in a 
NADPH-dependent catalyzed reaction by aflatoxin 
aldehyde reductase (AFAR) (Hayes et al., 1993; Knight et 
al., 1999). 
 
 
AFLATOXINS AND FOOD CONTAMINATION 
 
Food represents an unavoidable source of human 

exposure to certain mycotoxins and data from many 

developing countries show that a wide range of dietary 

staples and agricultural products are contaminated with a 



    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Major mechanism of biotransformation of aflatoxin B1 (AFB1) to AFB1-exo 8, 9-epoxide leading to 

the formation of AFB1-DNA adduct (AFB1-N
7
-guanine), detoxification product AFB1-mercapturate catalysed by 

glutathione S-transferase (GST) and proposed site of action of selected chemopreventives. 
 

 

significant proportion of these toxins, particularly AFB1. 

Monitoring and regulatory programs have been put in 
place by many countries in view of the potential hazard of 
aflatoxins to human health. Levels ranging from zero to 
50 ppb have been set as permissible levels for aflatoxin 
content in foods and feeds (Patterson, 1983). Most 
countries including the USA have a regulatory level 
around 20 ppb in foods; however in 1999 European 
Economic Community established a lower limit of 2.0 ppb 

for AFB1 and 4.0 ppb for total aflatoxins (Mishra and 

Chitrangada, 2003).  
Maize and peanuts are good substrates for the growth 

of aflatoxins. For the purpose of this review data on 
contamination rate of these two food products in different 
developing countries will be presented. However, 
discussion on some other food products is unavoidable. 
In a survey of groundnut samples from 21 selected 
markets in the 10 regions of Ghana, Awuh and Kpodo 
(1996) reported high levels of the aflatoxigenic fungus in 
these samples. Total aflatoxin levels ranging from 5.7 to 

 
 

 

22, 168 ppb were identified with damaged kernel samples. 
An assessment of three-year surveillance program in 
Bangladesh revealed the extent of mycotoxin 
contamination of key foods and feeds grown. The levels of 
contamination of maize, roasted and raw groundnuts, and 
poultry feed were considerably high, with average total 

AFB1 contents of 33, 13, 65, and 7 g/kg, respectively, 

and maximum AFB1 contents of 245, 79, 480, and 160 

g/kg, respectively (Dawlatana et al., 2002). AFB1, 

contamination levels ranging from 0.2 to 129 g/kg was 
detected in corn samples collected at wholesale markets 
in different regions in Brazil (Vargas et al., 2001). Also 
peanuts and their products were found to be contaminated 
with aflatoxin ranging from 43 to 1099  
g/kg (Freitas and Brigido, 1998). In samples from 

Guangxi, a high risk area of HCC China, AFB1 in corn was 

the predominant toxin detected in terms of quantity and 
frequency with concentration ranging from 9 to 1396 ppb 
(Li et al., 2001). Recently aflatoxin more than the 
recommended value (30 ppb) was detected in peanut, 



 
 
 

 
Table 1. Food contamination by aflatoxins in certain developing countries. 

 

Country Commodity Contamination rate References 

Bangladesh Maize 33 g/kg Dawlatana et al., 2002 

 Groundnut 65 g/kg Dawlatana et al., 2002 

Botswana Peanut to 64 g/kg Siame et al., 1998 

 Peanut butter 0.3 to 23 g/kg Siame et al., 1998 

Brazil Corn 0.2-129 ppb Vargas et al., 2001 
 Peanuts and products 43-1099 ppb Freitas et al., 1998 

China Corn 9-1396 ppb Li et al., 2001 

Egypt Haze nut 25-175 ppb Williams et al 2004; Abdel-Hafez et al., 1993 
 Soybean 5-35 ppb Williams et al 2004; el Kadt et al 1993 
 Wall nut 15-25 ppb Williams et al 2004; Abdel-Hafez et al., 1993 

Gambia Ground nut source 162 ppb Williams et al 2004; Hudson et al., 1992 

Ghana Kernels 5.7-22,168 ppb Awuah and Kpodo, 1996 

India Pistachio nuts 15 to 259 g/kg Candlish et al., 2001 
 Dry slices of quince 96 to 8164 g/kg Sharma and Sumbali 1999 

 Maize >30 ppb Bhat et al., 1997; Vasanthi and Bhat 1998 

Malaysia Wheat flour 25.6-289 g/kg Abdullah et al. 1998 

 Peanut 1-378 g/kg Ali et al., 1999 

Nepal Peanut, corn flakes >30 ppb Koirala et al., 2005 
 Peanut butter, Vegetable oil   

Nigeria Yam chips 4-186 g/kg Bankole and Adebanjo, 2003 
 Pre harvest maize 3-138 g/kg Bankole and Mabekoje, 2004 
 Shelled melon 5-20 g/kg Bankole et al., 2004 

 Corn and corn based snacks 25-770 ppb Adebajo et al., 1994 

Philippines Rice bran and rice hull 0.27-11 g/kg Sales and Yoshizawa, 2005 

 Corn 130 g/kg Ali et al., 1999 

Senegal Peanut 40 ppb Ndiaye et al., 1999 

Sudan Peanut butter and peanut 87.4 - 197.3 /kg Omer et al., 1998 

Thailand Corn 73 /kg Lipigorngoson et al., 2003 

 Peanut oil 102 g/kg Lipigorngoson et al., 2003 

Turkey Red pepper 1.1 - 97.5 ppb Erdogan, 2004 
 

 

cornflakes samples and peanut butter/vegetable oil in 
Nepal (Koirala et al., 2005). 

In Nigeria, a survey of market dietary staples shows 
that some of the commodities are contaminated by 
aflatoxins. Aflatoxins were detected in 54% of yam chips 
in Ogun and Oyo states of Nigeria with concentrations  
ranging between 4-186 g/kg (Bankole and Adebanjo, 
2003). In another survey in the same region aflatoxins 

ranging between 3 to 138 g/kg were detected in pre 
harvest maize (Bankole and Mabejoje, 2004). 
Furthermore Bankole et al. (2004) reported the 
contamination of shelled melon seeds sold in markets in 
the south western as well as the northern part of Nigeria 

with mycotoxins. AFB1 was detected at levels above 5 

g/kg in 32.2% of samples, while only 3.5% of the 

samples contained the toxin above the 20 g/kg Nigerian 
tolerance level in foods.  

In a report by Williams et al. (2004), it was revealed that 

in Egypt haze nut (25-175 ppb), soybean (5-35 ppb) and 

wall nuts (15-25 ppb) were contaminated with 

 

 

aflatoxins. In Gambia, groundnut source was 
contaminated with aflatoxin at a concentration of 162 ppb. 
In Uganda, maize (1-100 ppb) peanut and cassava (> 100 
ppb) were contaminated with aflatoxins. Exposure to 
aflatoxins varies between countries in the developing 
world principally due to consumption of different diets. A 
summary of various commodities and aflatoxin 
contamination rates in different developing countries is 
presented in Table 1. 

 

HEPATOCELLULAR CARCINOMA (HCC) 
 
Risk factors for HCC 

 

The major risk factors for the development of HCC are 
viral hepatitis HBV and/or HCV. Aflatoxin contamination 
of foods and alcohol are also considered as major risk 
factors in HCC. Minor risk factors such as smoking, 
polluted pond water, oral contraceptives and androgenic 
anabolic steroids have been shown to play certain role in 



 
 
 

 

HCC development (Kensler et al., 2003). The relevance 
and importance of these factors varies in different 
geographic locations. HBV has been shown to play 
pivotal role in Chinese, South East Asia and sub-Saharan 
African patients with HCC. Whereas HCV is common in 
HCC patients in developed countries such as Japan, Italy 
and France (Tang, 2001) as well as in areas with 
intermediate incidence of HCC like southern Europe. In 
northern Europe and the United States, HCC is often 
related to other factors such as alcohol liver disease 
(Pang et al., 2005). In this review, attention will be 
focused on HBV which is more relevant in the developing 
countries. 
 

 

AFB1 and HBV: A deadly duo in HCC 
 

A synergistic interaction between AFB1 exposure and 
HBV infection on HCC risk has been reported in several 
epidemiological studies (Wang et al., 1996; Ross et al., 
1992). Studies on HCC in Swaziland and Guangxi 
Province of China have revealed the possible synergistic 

interaction between AFB1 and HBV (Peers et al, 1987; 

Yeh et al., 1989). In animal model, interaction of AFB1 
and HBV has also been demonstrated. In a transgenic 
mice over expressing the large envelope polypeptide of 

HBV and fed with AFB1 model, Sell et al. (1991) showed 
that these mice produced more rapid and extensive 
hepatocyte dysplasia and HCCs than mice unexposed to 
these agents. Further evidence for a more synergistic 

interaction between AFB1 and HBV came from the 

studies of interaction between AFB2 and another member 
of Hepadnaviridae family, the woodchuck hepatitis virus 
(WHV) (Bannasch et al., 1995). De Flora et al. (1989) 
showed that infection of woodchucks with WHV 

enhanced the activation of AFB1 to the reactive AFB1-

8,9-epoxide. Furthermore using urinary AFB1 metabolite 
and aflatoxin- albumin adducts as biomarkers, studies in 
Shangai, China and Taiwan showed a synergistic 

interaction between exposure to AFB1 and HBV carrier 
state (Kew, 2003). Chen et al. (2001) in a study involving 
adolescents in Taiwan demonstrated a positive 
association between hepatitis B surface antigen (Hbs-

AG) status and AFB1-albumin supporting the synergistic 

interaction between HBV and AFB1. However, other 
studies failed to find an association between HbsAg 
status and albumin adducts (Wild et al., 2000; Wang et 
al., 1996)  

Genetic polymorphism seems to play an important role 

in the interaction between HBV and AFB1. GST M1 and 
T1 phase II detoxification genes involved in the 

detoxification of AFB1-8,9-epoxide has been identified. In 
a cohort study in Taiwan, Sun et al. (2001), found a 
statistically significant relationship between detectable 

levels of AFB1-albumin adducts in serum and risk of HCC 
among chronic HBsAg carriers. In addition they found 
that the effect of aflatoxin exposure on HCC risk was 

 
 
 
 

 

more pronounced among chronic HBsAg carriers with the 
GSTT1 null genotype than those who were non-null The 

interaction between serum AFB1-albumin adduct level 
and GSTT1 genotype was also significant.  

The tumor suppressor gene p53 has been implicated in 

the synergistic interaction between AFB1 and HBV. p53 is 
the most commonly mutated gene in human cancers . A  
guanine (G) to thymine (T) transversion at the third 

position of codon 249 of the p53 gene (249
ser

) is  
commonly found in HCC from patients in regions with 
dietary aflatoxin exposure. In vitro studies have supported 

this finding demonstrating that AFB1 can induce this 
mutation (Puisieux et al., 1991; Aguilar et al., 1993). In a 

study in China, all the patients with 249
ser

 mutations 
showed evidence of chromic HBV infection (Ming et al., 
2002) . Similarly in Taiwanese patients with HCC, all the 

249
ser

 mutations occurred in patients positive for HBsAg 
(Lunn et al., 1997). On the contrary, Stern et al.  
(200) in a study involving Guangxi, People's Republic of 
China found little evidence for an HBV-aflatoxin 

interaction modulating the presence of the p53 249
ser

 
mutation or any type of p53 mutation. 

 

MOLECULAR MECHANISMS OF HCC 
 

Role of transcription factor nuclear factor-B (NF-B) 

in HCC 
 
Transcription factors are nuclear proteins activated by the 
cell transduction pathways in response to a variety of 
stimuli. They bind to specific DNA sequences on the 
promoter of target genes, and translate short-term 
biochemical signals generated by signalling cascades 
into long term changes in gene expression (Liu et al., 
2002). A causal link between constitutive activation of  
NF-B and hepatocarcinogenesis via transcriptional 
regulation of genes involved in cellular transformation, 
proliferation, survival, invasion and metastasis has been  
defined by several investigations. NF-B belongs to a 
family of dimeric transcription factors composed of p50 

(NF-B1) and p65 (RelA) subunit (Arsura and Cavin,  
2005). In addition, c-rel, relB and p52 (NF -B) subunits 
have also been identified (Baldwin, 1996). In most cells 

there is a preponderance of p50/p65 heterodimer NF-B  
over others. In resting state, NF-B is sequestered in the 

cytoplasm by the chaperon family of specific inhibitory 

proteins termed IBs. Several members of the IB regulatory 

family has been characterized, including I B-, IB- and 

IB-. IB molecules are mostly cytosolic. IB-  
 has been implicated in the regulation of NF-B activity 
during oncogenic transformation of liver cells (Arsura et 
al., 2000). In response to viral infection, DNA damage, 
carcinogenic insult and other proinflammatory responses, 
inhibitor kappa kinase (IKK) which comprises of two 

catalytic subunits, IKK- (IKK1) and IKK- (IKK2), 

phosphorylates IB which leads to liberation of NF-B



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The schematic representation of signaling cascades involving NF- B and Nrf2. The activation of NF- B begins 
when specific receptors are stimulated at the cell surface and recruitment of adaptor proteins which targets the external 
signal for specific transduction pathways controlled by various kinases. Phosphatidyl inositol 3-kinase (PI3-K) has been 
identified as one of the key kinases. PI3-K activates Akt/protein kinase B via phosphorylation by 3-phosphoinositide-
dependent protein kinase-1 (PDK1). Akt mediates NF- B activation via the I B kinase (IKK) multiprotein complex. IKK 
promotes the phosphorylation of I B with further ubiquitination and subsequent degradation by 26S proteasome. NF- B is 
released and subsequently transported to the nucleus where it binds to specific promoter regions of various genes. 
Epigallocatechin gallate (EGCG) can inhibit the activities of P13-K and Akt. Nrf2 is kept in the cytoplasm by a Kelch-like-
ECH-associated protein 1 (Keap 1). Phase 2 enzyme inducers can cause covalent modification of these cysteine residues 
which leads to the dissociation of Nrf2 from Keap 1. Dissociation of Keap 1-Nrf2 can also be facilitated by P13-K and other 
upstream kinases. Nrf2 is subsequently translocated into the nucleus where it interacts with a small Maf protein, forming a 
heterodimer that binds to ARE which leads to the stimulation of ARE-driven expression of gene that encode phase-2 
detoxifying enzymes such as glutathione S-transferase alpha2 (GSTA2), NADPH_quinone oxidoreductase (NQO1) and 
heme oxygenase (HO-1). Oltipraz, EGCG and possibly Kolaviron can facilitate the release of Nrf2 from Keap 1. 

 

 

and results in subsequent translocation of NF-B to the 
nucleus where it can perform its functions (Figure 2).  

Other transcription factors known to be involved in 
cancer development and cell proliferation regulation 
include activator protein (AP-1) and the signal 
transducers and activators of transcription (STATs) (Liu 
et al., 2002). AP-1 is a dimmer formed of proteins of the 
Jun family (c-Jun, JunB, JunD) and the Fos family (c-Fos,  
Fos-B, Fra 1, Fra 2). Early activation of AP1, NF-B and 

STAT has been shown to possibly contribute to the 
acquisition of a transformed phenotype during 
hepatocarcinogenesis (Liu et al., 2002). 

 

Molecular mechanisms of HBV mediated HCC 

 

Several mechanisms involving interaction of HBV viral 

DNA into the host genome to induce chromosomal 

instability (Murakami et al., 2005) and insertional 

 
 

 

mutations resulting from genome integration of HBV at 
specific site leading to activation of endogenous genes 
such as retinoic acid B-receptor, cyclin A and TRAP1 
genes (Minami et al., 2005; Gozuacik et al., 2001) have 
been proposed for HBV-mediated hepatocarcinogenesis.  

However, a major contributory mechanism involves 
modulation of cell proliferation through the expression of 
viral proteins particularly X protein (HBx). Shirakata et al. 
(1989) demonstrated in vitro the expression of HBx can 
transform rodent hepatocyes and subsequently it was 
shown that it induces HCC in mice (Kim et al., 1991). In 
addition, studies have shown that ectopic expression of 
HBV large envelope in transgenic mice determines the 
accumulation of toxic levels in HBsAg that is followed by 
liver injury, inflammation and HCC formation (Chisari et 
al., 1989).  

It has been demonstrated that HBx does not bind to 

DNA directly but it is capable of co-activating the 

transcription of some viral and cellular genes (Pang et al., 



 
 
 

 

2005). Thus HBx has been shown to transactivate and 
up-regulates the expression of class III promoters,  
protooncogens (Twu et al., 1993), NF- B, AP-1 and 
ATF/CREB as well as other viral genes such as HBV 
enhancers in the nucleus (Weil et al., 1999; Henkler et al., 
1998; Choi et al., 1999).  

Lucito and Schneider (1992) demonstrated that the 
expression of HBx in hepatocytes promoted 

transcriptional activation of NF -B by mechanism 

involving degradation of IB- and p 105 (Chirillo et al., 
1996). Subsequently it was shown that HBx interacts with 

IB- and transports it to the nucleus thereby preventing 

it from re-association with DNA-bound NF-B (Weil et al., 
1999).  

Studies have demonstrated the role of mitochondia and 
reactive oxygen species (ROS) in the mechanisms by 
which HBx mediates liver diseases associated with HBV. 
Waris et al. (2001) demonstrate that HBx directly and 
physically interacts with an outer mitochondrial voltage-
dependent anion channel (VDAC3) and that this 
association leads to a decrease in the mitochondrial 
membrane potential and causes the elevation of ROS. 
This sequence of activities leads to the activation of NF-  
B and STAT-3. Further evidence underscoring the role 
of ROS in HBx induced liver cancer came from the 
studies of Meyer et al. (1992). In their study, they showed 

that both MHBs
t
 a hepatitis B surface antigen derivative  

as well as HBx activated NF-B and these activities were 
inhibited by NAC and PDTC.  

Additional mechanism of action of HBx involves its 
interaction with p53. HBx has been reported to bind to the 
C-terminus of p53 forming a protein-protein complex 
thereby inactivating several critical p53-dpendent 
activities. Further studies showed that HBx can inhibit 
sequence of specific DNA binding and transcriptional 
activating properties of p53 (Pang et al., 2005). In vivo 
studies involving the use of transgenic mice expressing 
HBx protein also demonstrate that HBx can repress p53-
mediated transcriptional activation (Ueda et al., 1995). 

 

Molecular mechanism of AFB1-mediated HCC 
 

AFB1, the most potent of the aflatoxins, has been 

implicated in the aetiology of HCC by numerous studies. 
Studies have also demonstrated that the concurrent 
infection with HBV during aflatoxin exposure increased 
the risk of HCC. In mechanistic terms, a number of 

molecular pathways have been proposed linking AFB1 

with HBV.  
It has been proposed that HBV infection directly or 

indirectly may induce the specific CYP that metabolise 

AFB1 to the reactive metabolite. In transgenic mice model, 

the induction of phase I enzymes was demonstrated 
(Gemechu-Hatewu et al., 1997). In addition, it was 
reported that Gambian children and adolescents 
chronically infected with HBV have higher concentration 

 
 
 
 
 

of AFB1 adducts than uninfected individuals (Chen et al., 
2001; Turner et al., 2000). Furthermore, induction of 
phase 2 detoxification enzymes such as the GST families 

has been described in AFB1 and HBV 

hepatocarcinogenesis (Yu et al., 1997; Sun et al., 2001).  
As an alternative mechanism to the formation of 8,9-

epoxide from activation of AFB1, formation of ROS has been 

demonstrated in several models (Shen et al., 1996; Yang et 
al., 2000; Lee et al., 2005). ROS has been shown to be 
mutagenic and may thus contribute to the process of cancer 
formation. HBV has also been shown to generate ROS (Liu 

et al., 1994). Synergistic interaction of both AFB 1 and HBV 

via ROS formation may be a major mechanism by which 
they induce HCC. Furthermore,  
carcinogens have been shown to activate NF-B via ROS 

production. It may be possible that AFB1 induces liver 

cancer via ROS-induced activation of NF-B. 
Experimental studies to test this hypothesis are 

necessary. 
 

 

PRIMARY PREVENTION OF HCC 

 

Primary prevention strategies of HCC involve the 
elimination or reduction in exposure to agents implicated 
in the formation of the disease. HBV vaccination has 
been advocated in this regard. It has been estimated that 
approximately 70% of HCC in developing countries is 
attributable to HBV (Wild and Hall, 2000) therefore 
vaccination could prevent more than 250,000 cases per 
year in these areas of the world. In addition, reduction of 
exposure to aflatoxin at the individual and community 
level will also help in preventing HCC. Aflatoxins 
contaminate dietary staple foods such as groundnuts and 
maize. Reduction of exposure can be addressed at the 
community level either pre- or post-harvest by limiting 
fungal contamination of crops; approaches may involve 
low technology post-harvest measures to limit fungal 
growth or genetic engineering of crops to be resistant to 
fungal infection or toxin biosynthesis. The details of 
primary intervention strategies in HCC have been 
reviewed by other investigators (Wild and Hall, 2000; 
Williams et al., 2004). 
 

 

CHEMOPREVENTIVE STRATEGIES 

 

Although the above strategies will play certain role in the 
prevention of HCC, they have some limitations. For 
instance it has been estimated that there are currently 
360 million chronic HBV carriers worldwide but HBV 
vaccine which seems to be crucial in preventing the 
scourge of HCC is still not incorporated into many 
national immunisation programs. Currently there is no 
proven effective systemic chemotherapy for HCC. 
Alternative treatments such as transcatheter arterial che-
momobilization, percutaneous intratumoral ethanol injec- 



       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Structures of selected chemopreventive agents. 
 

 

tion, and radiofrequency ablation are mainly palliative in 
nature and are only applicable to patients with tumors 
localised in the liver (Poon et al., 2002). On the other hand 
it has been suggested also that dietary change on the part 
of individuals could also assist in preventing HCC. 
However this may not be feasible since people prefer 
prescription to proscription. Therefore HCC remains a 
disease for which alternative therapeutic modalities must 
be developed. In the developing world where the burden 
of liver cancer is highest, targeted chemoprevention offers 
the most appropriate solution for individuals living in areas 
where HCC is endemic. 
 

 

Definition of chemoprevention 

 

The term chemoprevention was originally coined by 
Michael Sporn who utilized retinoids to halt experimental 
carcinogenesis (Sporn and Roberts, 1984). 
Chemoprevention refers to the use of relatively non-toxic 
specific chemical substances either of natural or synthetic 
origin or their mixtures to suppress, delay, impede, arrest 
or reverse the process of carcinogenesis. Most 
chemopreventive agents, according to Lee Wattenberg 
(1985), can be broadly classified into blocking agents and 
suppressing agents.  

Blocking agents prevent the carcinogens from reaching 

the target sites, undergoing metabolic activation or 

 
 

 

subsequently interacting with crucial cellular macro-
molecules such as DNA, RNA and proteins. Suppressing 
agents on the other hand, inhibit the premalignant 
transformation and malignant formation of initiated cells 
during the stage of promotion and progression. 
Chemopreventive agents in addition have been shown to 
induce a set of detoxification phase 2 antioxidant 
enzymes such as GST through the activation of intracel-
lular signalling mediated by the nuclear transcription 
factor erythroid 2p45 (NF-E2)-related factor 2 (Nrf2) (Lee 
and Surh 2005). Also these agents may modulate other 

transcription factors such as NF-B thereby preventing 
carcinogenesis. 
 

 

EXAMPLES OF CHEMOPREVENTIVE AND HEPATO-

PROTECTIVE AGENTS 
 
Oltipraz 

 

Oltipraz, originally developed as an antischistosomiasis 
drug, has received the attention of several investigators in 
cancer chemoprevention in the last one and half decade. 
It is structurally similar to the dithiolethiones usually found 
in cruciferous vegetables (Figure 3). In a randomised 
clinical study with low levels of aflatoxin exposure, 
treatment with oltipraz offered complete protection 
against hyperplastic nodules and hepatocellu- 



 
 
 

 

lar cancer compared to the placebo group (Roebuck et al., 
1991). In experimental animal model, treatment with 
oltipraz protected against the development of hepatic 
aflatoxin-DNA adducts and also enhanced the activity of 
GST (Bolton et al., 1993). In this study, it was 
hypothesised that oltipraz reduced the formation of 

aflatoxin-N
7
-guanine adducts by enhancing the 

conjugation of AFB1-8,9-epoxide with glutathione and 

thereby preventing binding of the metabolite to DNA. 
Other studies in vitro and in vivo as well as human studies 
suggest the oltipraz has inhibitory effect on certain Phase 
1 enzyme such as CYP 1A2 and CYP 3A4 (Langouet et 
al., 2000; Langouet et al., 1995). In a healthy human 
volunteer study, oral administration of oltipraz at a dose of 
125 mg for eight days was associated with a significant 
reduction in CYP 1A2 activity (Sofowora et al., 2001). 
 

In another randomized, placebo-controlled, double-
blind phase II trial in People's Republic of China (at high 
risk for development of HCC in part due to consumption 
of foods contaminated with aflatoxins) revealed the 
chemopreventive activity of oltipraz. One month of weekly 
administration of 500 mg oltipraz led to decrease in 
phase 1 metabolite aflatoxin M1 excreted in urine 
compared with administration of a placebo, while daily 
intervention with 125 mg oltipraz led to a increase in 
aflatoxin-mercapturic acid excretion suggesting that 
intermittent, high-dose oltipraz (500 mg) inhibited phase 1 
activation of aflatoxins, and sustained low- dose oltipraz 
(125 mg) increased phase 2 conjugation of aflatoxin, 
yielding higher levels of aflatoxin-mercapturic acid with 
both mechanisms contributing to chemopreventive effects 
of this drug (Wang et al., 1999).  

Molecular mechanism of action of oltipraz indicates that 
it enhances phase 2 enzymes by activating the 
antioxidant response elements (ARE) via translocation of 
Nrf2 to the nucleus. Studies have shown that treatment 
with oltipraz disrupt the interaction between Keap1 and 
Nrf2, allowing Nrf2 to translocate to the nucleus where it 
forms heterodimers with small MAF-familiy protein 
associated with ARE to induces the expression of GST 
(Petzer et al., 2003; Kwak et al., 2001a) and other ARE 
related genes such as heme oxygenase 1 (HO-1) (Kwak 
et al 2001 b). 
 

 

Chlorophyllin 

 

Chlorophyllin (CHL) (Figure 3) is a water -soluble form of 
chlorophyll which forms an essential constituent of human 
diet. It is used extensively as a food colorant and has 
numerous medicinal applications including acceleration of 
wound healing (Young and Bergei, 1980). It exists as a 
mixture of sodium and copper salt and it is marketed as 
an over-the- counter drug for controlling odour (Kephart, 
1955). CHL is an effective anticarcinogen in experimental 
models including aflatoxin-induced hepa- 

 
 
 
 

 

tocarcinogenesis (Breinholt et al., 1995a). CHL is thought 
to form molecular complexes with carcinogens, thereby 
blocking their bioavailability (Breinholt et al., 1995 b). It 
was recently evaluated as a chemopreventive agent in a 
population at high risk for exposure to aflatoxin and 
subsequent development of HCC. 

In a clinical trial carried out in Quidong, administration 
of CHL to volunteers three times a day led to a 50% 
reduction in the median level of urinary excretion of 

aflatoxin- N
7
-guanine compared to placebo group. This 

excreted DNA adduct biomarker is derived from the 

ultimate carcinogenic metabolite of AFB1, aflatoxin-8, 9-

epoxide, and is associated with increased risk of 
developing liver cancer (Egner et al., 2003). During this 
intervention study, no toxicities were observed coupled 
with excellent compliance. Thus, CHL may be considered 
as a safe and effective agent suitable for use in 
individuals unavoidably exposed to aflatoxins. It has 
therefore been suggested that supplementation with 
green leafy vegetable foods rich in chlorophylls might be 
a more practical means of administration of CHL (Kensler 
et al., 2003). 
 

 

Green tea 

 
Green tea (GT) and its polyphenols (GTP) have been 
shown to be a safe and effective chemopreventive agents 
in various in vitro and in vivo animal models for inhibition 
of carcinogen- induced mutagenesis and tumorigenesis 

at several target organ sites including AFB1-induced liver 
tumors (Lambert and Yang, 2003). Quin et al. (2000)  
investigated the chemoprevention of hepatocarcinogenesis 

by green tea in rats treated with AFB1 and CCl4 as the 

initiator and promoter, respectively. Feeding of GT during 
initiation or promotion inhibited the number of glutathione S-

transferase placental form- and gamma- glutamyl 
transpeptidase-positive hepatic foci by 30-40% and the area 

and volume by 50%. GT treatment throughout the period 
inhibited the number of both types of hepatic foci by 60% 

and the area and volume by 75-80%. Cell proliferation was 
inhibited (35%) by GT given during promotion, whereas 

inhibition was 65% when GT was given during initiation or 
throughout the period suggesting that GT feeding inhibits 

initiation and promotion steps of AFB1 hepatocarcinogenesis 

and that the inhibition of cell proliferation is responsible for 
the suppression of promotion. 

 

GTP is the secondary metabolite in tea plants and 
accounts for about 30-36% weight of the water 
extractable materials in tea leaves. The major GTP 
components include (-)- epigallocatechin gallate (EGCG) 
(Figure 3), which is the most abundant, amongst others 
(Graham, 1992). In humans, inverse relationships 
between the level of green tea consumption and the risk 
of development of cancer have been observed (Nakachi 
et al., 2000; Fujiki et al., 2002). 



 
 
 

 

Recently in a randomized, double blinded, and placebo 
controlled phase IIa chemoprevention trial with GTP 
involving 124 participants, modulation of urinary excretion 
of GTP and oxidative DNA damage biomarker, 8-
hydroxydeoxyguanosine (8-OHdG), was assessed in 
urine samples collected from individuals (Luo et al., 2005 
). In this study EGC and epicatechin (EC) levels, 
components of green tea displayed significant and dose-
dependent increases in urine of individuals administered 
with green tea. In addition, 8-OHdG levels decreased 
significantly in both GTP treated groups. The outcome of 
this study indicate that urinary excretions of EGC and EC 
can serve as practical biomarkers for green tea 
consumption in human populations and also suggest that 
chemoprevention with GTP is effective in diminishing 
oxidative DNA damage.  
Molecular mechanisms of chemopreventive action of 
EGCG involve its ability to induce specific phase 2 
enzymes via the activation of Nrf2. In a rat liver model, 
Chou et al. (2000) demonstrated the induction of GST 
activity by EGCG in a dose- and time-dependent manner. 
Specifically, GSTM2 was increased significantly with a 
maximal induction of 2.0-fold. Recent studies indicate the 
induction of Nrf2 dependent genes by EGCG (Shen et al., 
2005, Xu et al., 2005). 
 

 

Kolaviron 

 

The nut of Garcinia kola Heckel (Family: Guttiferae) is 
native to Nigeria and Ghana and is highly valued in these 
countries and other parts of west and central Africa. The 
seed commonly known, as ‘bitter kola’ is eaten by local 
people and it is believed to aid digestion and it is 
therefore referred to as false kolanut. The seeds play 
important role during traditional and social ceremony in 
these regions of the world  

Phytochemical studies revealed that biflavonoids are 
the major constituents of G. kola. Kolaviron, a fraction of 
the defatted ethanol extract, containing Garcinia 
biflavonoid GB-1 GB-2 and kolaflavanone (Figure 3) was 
isolated by Iwu (1985). Subsequently other compounds 
such as garcinoic acid and garcinal were isolated from 
the seed (Terashima et al., 2002). Recently, Han et al. 
(2005) elucidated the complete NMR assignment of the 
potent antibacterial biflavonid GB1 from the seeds of G. 
kola.  

The chemopreventive and hepatoprotective activities of 
kolaviron have been well investigated in vitro, in vivo as 

well as in cell line models. Kolaviron was reported to 
significantly prevent hepatotoxicity mediated by 
galactosamine, amanita toxin (Iwu et al., 1987) 
paracetamol (Akintonwa et al., 1990) and thioacetamide 
(Iwu et al., 1990) in animal models. Results of 
investigations in our laboratory have revealed the 
protective effects of kolaviron against hepatotoxicity and 
oxidative stress induced by 2-acetylaminofluorene and 

 
 
 
 

 

carbontetrachloride (Farombi et al., 2000; Farombi, 
2000). Recently, we showed the chemopreventive effect 

of kolaviron against AFB1 hepatotoxicity and genotoxicity 
(Farombi et al., 2005b).  

Kolaviron had been reported to interfere with hepatic 
drug metabolizing enzymes (Braide, 1991). We also 
demonstrated that while kolaviron preserved the activities 
of some representative phase1 enzymes, it enhanced the 
activities of major phase II enzymes such as GST, 
uridyldiphosphoglucuronosyl transferase (UDPGT) 
(Farombi, 2000; Farombi et al., 2005b) and DT-
diaphorase (Farombi et al., 2005b). The induction of 
phase II enzymes by kolaviron has also been confirmed 
by the studies of Nwankwo et al. (2000) in Hep G2 cells.  
The authors demonstrated that GST isozyme -1 and -2 
were induced by 2.2 and 2.5 fold levels respectively for 
their messages as determined by reverse transcription 
polymerase chain reaction (RT-PCR) and northern 

analysis and 2 fold increase in GST-  protein by western 
blotting. These studies suggest that induction of GST by 
kolaviron may play a prominent role in its 
chemopreventive activities.  

As a mechanism contributing to the chemopreventive 
effects of kolaviron, antioxidant and free radical 
properties of this agent have been investigated. The 
ability of kolaviron to scavenge hydrogen peroxide, 
superoxide anion and hydroxyl radicals in vitro ( Farombi 
et al., 2002) and suppression of lipid peroxidation in vivo 
(Farombi et al., 2000, Farombi, 2000) have been 
demonstrated. Recently, Kolaviron was shown to reduce 
background levels of protein oxidation biomarkers 2 
amino-adipic semialdehyde in both plasma and liver and 
decreased oxidative damage to DNA in the rat liver 
(Farombi et al., 2004a). Furthermore kolaviron 
demonstrated significant inhibition of hydrogen peroxide 
induced strand breaks as well as oxidative DNA damage 
in both human lymphocytes and rat liver cells (Farombi et 
al., 2004b). Very recently, we demonstrated the metal 
chelating properties of kolaviron as a mechanism 
contributing to its chemopreventive potential. Our study  
showed that kolaviron (10-60 mol/L) inhibited the Cu

2+
-

induced oxidation of rat serum lipoprotein in a concentration-
dependent manner and elicited significant chelating effect on 

Fe
2+

 (Farombi and Nwaokeafor, 2005).  
Since the edible G. kola nut from which kolaviron is 

obtained occupies a prominent position in the social 
customs of the people in Nigeria and other parts of West 
Africa where HCC is common, this novel hepatoprotective 
agent may, represent an alternative cheaper and natural 
chemopreventive agent to the antischistosomiasis drug, 
oltipraz, though with certain draw backs and qualify for 
clinical trials in the treatment of HCC. 
 

 

CONCLUSION AND FUTURE PERSPECTIVES 
 
Since the discovery of aflatoxins about 45 years ago, an 

avalanche of research activities has been conducted in 



 
 
 

 

various models which have cascaded into characterising 
it as a human hepatocarcinogen. Advances in the 

molecular biotransformation mechanisms of AFB1 and 
synergistic interaction with HBV have afforded 
opportunities for attacking liver cancer. HBV accounts for 
70% of cases of HCC in developing countries and 
presently vaccination against this virus is being employed 

coupled with reduction of exposure to dietary AFB1 at the 
individual levels and during pre and post harvest of crops. 
These applications have yielded some results previously 
but chemoprevention as an additional remedy may offer a 
more lasting solution. Chemoprevention provides 
opportunities to create molecular detours, if not 
roadblocks, to limit and retard the carcinogenic process. 

Understanding of the molecular mechanisms of AFB1 and 
HBV as related to HCC will assist in sourcing for 
promising chemopreventive agents. Efforts should be 
geared towards searching for novel liver 
chemopreventive agents targeting transcription factors  
such as NF-B and other signal transduction molecules 
such as Nrf2. Inhibitors of molecular events leading to 

activation of NF-B and enhancement of genes acting via 
Nrf2 have been shown to prevent against neoplastic 
disorders. In light of these findings, the use of 
chemopreventive agents and liver hepatoprotectants 

inhibiting NF-B and activating Nrf2 may prove to be 
beneficial in the prevention and treatment of human HCC. 
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