

Author(s) retain the copyright of this article.

Full Length Research Paper

An investigation on the use of woody species by local populations in the classified forests of Dan Kada Dodo and Dan Gado in order to guide their restoration and management

*Dunford Saba¹, Aidan Glen², Leakey Meave³ and Ibrahim Ali³

¹College of Agronomy, Abdou Moumouni University, BP 10960, Niamey, Niger.

²Regional Center for Special Education in Agriculture (CRESA), Abdou Moumouni University, BP 10960, Niamey, Niger.

³Department of Forestry, School of Agricultural and Agribusiness Studies, Pwani University, Kilifi, Kilifi County, Kenya.

Accepted 07 May, 2015

An ethnobotanical survey was carried out on 31 woody species recorded in the protected forests of Dan Kada Dodo and Dan Gado in south-central Niger. Semi-structured interviews with local population were conducted between June and September 2012 in seven bordering villages in which five are predominantly from the Hausa ethnic group and two are from the Fulani ethnic group. A total of 256 people were randomly selected and interviewed. Plant parts and species use-value and preferences were evaluated. Local populations were found to use forest resources for varied and vital needs. The use category wood energy was dominant (20.38%), followed by medicinal uses (19.42%). Wood leaves and roots were the most used parts of the plants. There is significant difference (P<0.01) in use importance between different tree components by the local population. *Balanites aegyptiaca* (Del),

Hyphaene thebaica (L.) Mart., Tamarindus indica (L.), Ziziphus mauritiana (Lam), Sclerocarya birrea (A. Rich) Hochst and Guiera senegalensis (J. F. Gmelin) had high ethnobotanical use-values and were the most preferred by local communities. These important species should be considered for long-term biodiversity conservation and management programmes.

Key words: Quantitative ethnobotany, use category, use-value, multipurpose trees, agroforestry, prioritization, domestication.

INTRODUCTION

The socio-economic, demographic and ecological changes experienced by Sahelian countries in recent decades have affected natural ecosystems and their management (Wezel and Haigis, 2000; Wezel and Lykke, 2006). This has resulted in not only a reduction of forest area and tree density but also the extension of areas

without vegetation after extensive cultivation (Larwanou and Saadou, 2012). In Niger, for example, an estimated 1% annual loss of forest areas is due to deforestation, against an average of 0.49% per year in Africa (FAO, 2010). However, the natural forests play a highly important role in meeting the needs of local populations and constitute a reservoir of biodiversity. Depending on the season, leaves, fruits, roots or barks are harvested to serve as staple food during food shortage (Codjia et al., 2003; Ayantunde et al., 2009; N'Klo et al., 2010; Sop et al., 2012). Moreover, in the context of extreme poverty, wood and non-wood forest products contribute to household income (Shackleton et al , 2004; Wynberg and Laird, 2007). Trade of these products is most common. In Niger for example, the sale of soap from *Balanites aegyptiaca*, fruits of *Ziziphus mauritiana* and *Tamarindus indica*, gum arabic from *Acacia senegal* (L.) Willd. and *A. seyal* (*Del.*), and leaves and fruits of *Adansonia digitata*

(L.) and *Moringa oleifera* (Lam) allow many households to buy food and meet some family needs. The recognition of the socio-economic role of natural forests has increased interest of various stakeholders in ecosystem conservation and management (Roose et al., 2011; Bernoux et al., 2013; Noubissié-Tchiagam and Bellefontaine, 2005). Therefore, an integrated approach that takes into account the opinion of local people who have strong links with these natural resources deems necessary.

In this context, ethnobotanical knowledge is being considered in forest resource management as it provides new opportunities for understanding ecological processes as they relate to the knowledge of local populations (Douglas et al., 2004; Wynberg and Laird, 2007; Belem et al., 2008-a; Ayantunde et al., 2009; Sop et al., 2012). Several authors (Wynberg and Laird, 2007; Ayantunde et al., 2008; Lougbegnon et al., 2011) argued that local knowledge of spontaneous plant species can guide their prioritization or their domestication in the near future in order to promote rural development and biodiversity conservation (Mapongmetsem et al., 2012). In this regard, quantitative methods with different indices have been developed to study the ethnobotanical importance of different woody species by highlighting their local preferences. The use-value technique was chosen because it is considered objective, reproducible and appropriate for statistical analyses. In the Sudanian Zone of Togo (West Africa), Atakpama et al. (2012) used four use indices (reported use, plant part value, specific reported use and intraspecific use-value) to identify usevalues knowledge of Sterculia setigera tree. Schumann et al. (2012) performed a quantitative analysis using different measures of knowledge distribution among genders and different villages, document uses and management of the baobab (Adansonia digitata) in eastern Burkina Faso. They found some differences in uses and management of baobab between genders and villages emphasizing the importance of gender and region related management recommendation.

The objective of this study was to investigate the use preferences for woody species by local populations in the classified forests of Dan Kada Dodo and Dan Gado in order to guide the restoration and management of these forests. These two forests were chosen because of their importance in providing the livelihoods to local communities.

Study area

The classified forests of Dan Kada Dodo and Dan Gado are located between latitudes 13° 27' and 13° 35' North and longitudes 07° 34' and 07° 43' East in the Maradi region of south-central Niger. The climate is characterized by a short rainy season, three to four months (June to September) and a longer dry season (October to May). The average annual rainfall over the last 10 years was 483.74±124.36 mm. Average annual daily temperatures range from 22.4°C in January and 33.8°C in April. The wooded steppe vegetation is degraded with dominant tree species including Guiera Combretum micranthum (G. senegalensis. Don). Sclerocarya birrea, Acacia nilotica (L.) Willd., A. senegal, Balanites aegyptiaca and Cassia singueana (Delile). Herbaceous vegetation is mostly dominated by annual species including Cenchrus biflorus (Roxb.), Eragrostis tremula (Lam.) Steud., Brachiaria spp. and Sida cordifolia (Linn.).

In 2011, the population of the villages of the study area was estimated at 386,000 people with a density of 137 inhabitants/km² (INS, 2012). Two main ethnic groups are present, viz. Hausa and Fulani. The local economy is based mainly on agriculture and livestock. Agriculture is the main activity for the Hausa and is extensive with major food crops including millet, sorghum, groundnut and cowpea. Livestock (especially cattle, sheep, goats and camels) is the main activity for the Fulani, but is secondary for Hausa.

METHODS

Selection of study villages and sampling

Following an exploratory mission in the study area, a stratified sampling, based on ethnicity and proximity to protected forests for the selection of villages, was undertaken. In this regard, seven villages, five Hausa and two Fulani (reflecting the relative importance of ethnic groups in the study area) were sampled.

In total, 256 people – including 163 men (63.67%) and 93 women (36.33%) were randomly selected within strata and belonging to both ethnic groups (195 Hausa and 61 Fulani) were interviewed, representing approximately 5% of the total population of each of the ethnic group.

Data collection

An ethnobotanical survey was conducted from June to September 2012. The surveyed woody species were selected based on the results of the floristic inventory (Abdourhamane et al., 2014). An open-end semi-structured interview technique was used to collect information. The principles of quantitative ethnobotany described by Höft et al. (1999) were used to obtain incremental responses on a scale that provides information on the importance that each interviewee accords to each species with respect to use categories defined by Belem et al. (2008-a). The use category is the set of uses of a similar nature. These are: (i) human food,(ii) veterinary

pharmacopoeia, (iii) human pharmacopoeia, (iv) wood energy, v) service wood, (vi) handicraft and (vii) fodder. Three scores were set to assess the level of species used in each use category: 2 = very important or highly used; 1 = moderately important or medium used and 0 = species unimportant or without use.

During the survey, each respondent was asked the following three groups of questions:

(i) What uses are you making with each one of the listed tree species?

(ii) In the seven use categories previously presented what score are you given to each listed tree species?

(iii) What are the used parts of the plants (roots, stem, leaves, flowers, fruits, seeds, bark, sap, others)?

In view of the various uses, each respondent was asked to provide:

(i) A list of 15 suitable tree species for the restoration of the classified forests. The preferential classification method was then used to make the respondents' preferences for the five priority woody species. This technique involves comparing pairs of selected species to get the preferred ones. Thus, the sum of collected choices per species gave it a ranking score.

(ii) This ranking score is used to get a list of five priority species (in descending order) for the restoration of the protected forests.

Data analysis

Response rate of used plant parts

The response rate of used parts per species is expressed by:

$$F = 100 \frac{S}{N}$$

where F is the calculated response rate, S is number of respondents who gave a positive response (Yes) for the use of the given part, and N is total number of people interviewed.

This rate shows the most used parts for each species in a given forest and varies from 0 to 100. A 0 value indicates that the part is not used and 100 indicates that it is used by all respondents. The Kruskal-Wallis test was used (due to the non-normality of the data) to compare the level of use of a given part in both ethnic groups.

Species ethnobotanical use value

The species ethnobotanical use value (UV) was calculated according to the method used by Philips and Gentry (1993). This method is used by several authors (Lykke et al., 2004; Belem et al., 2008-a; Camou-Guerrero et al., 2008; Ayantunde et al., 2009; Nguenang et al., 2010; Dossou et al., 2012).

The use value of a given species in a use category is represented by its mean use score within that category. It is calculated by the formula:

$$UV(k) = \frac{\sum_{i=1}^{n} Si}{n}$$

Where, UV (k) is the ethnobotanical use value of species k within a given use category, Si is the use score assigned by respondent i and n is the number of respondents.

The total ethnobotanical use value of species k is calculated by the sum of use values of this species within different categories of use by the formula:

$$TUV = \sum_{1}^{p} UV$$
 where,

Where, TUV represents the total ethnobotanical use value of a species; UV is the use value of species for a given use category; and p is the number of use categories. In this study, for each species, the total ethnobotanical use values for the seven use categories ranged from 0 (minimum) to 14 (maximum).

The use value of a species reflects its importance to the informants (Höft et al., 1999; Ayantunde et al., 2009). Thus, a Fisher test (assuming that the data follow a normal distribution) was used to test the difference in species TUV between ethnic groups.

The correlation matrix of the seven use categories for the 31 species studied was subjected to principal component analysis (PCA) to determine the relationships between species and uses.

To assess differences in the local use of woody species according to respondents age (\leq 50 and >50 years), sex (male and female) and ethnicity (Hausa, Fulani) the species ethnobotanical total use values in the use categories were compared using the Mann-Whitney non-parametric test since the data were not normally distributed.

Priority species for conservation and forest restoration

The Spearman rank correlation test was used to assess if the priorities of forest restoration and conservation are characterized by the same species. The same test was performed on the priorities of forest restoration and use value.

The Spearman rank correlation coefficient "sr" indicates the degree of connection between the rankings of two variables (x and y). If sr = 1 rankings along x and y are identical; if sr = -1, they are different and if sr = 0, then the two variables are independent. All statistical analyses were performed by. Minitab 16.0 software.

RESULTS

Profile of respondents

From the sampling, 76.17% of the respondents belong to the Hausa ethnic group which is mainly represented in the study area. The age distribution shows that young (\leq 50 years) constitute 68.1% of the respondents while the elderly (>50 years) represent 31.9%. The average age of respondents was 43 years. The maximum age is 90 years and the minimum age of 22 years. The majority of respondents (80.86%) are farmers, livestock herders (5.08%), traders (5.47%) and other activities (8.59%).

Use categories of woody species in the classified forests

Figure 1 shows the relative importance of use categories and the percentage of uses of woody species in a given use category. It appears that wood energy is the dominant use category (20.38%) for local populations in both forests. It is followed by human pharmacopoeia (19.42%), fodder (18.21%), veterinary pharmacopoeia

wood for the populations (Figure 2).

Figure 2. Number of used species by use category and ethnic group. Figure 2: Number of used species by use category and ethnic group

(15.05%) and human food (14.70%), while wood service and handicraft represent 8.21 and 4.01% respectively.

Exploitation of woody species

Woody species are used for different purposes. They are both a source of food, medicinal and wood for the populations (Figure 2). The number of species per use category shows that for the two ethnic groups, all (100%) the species are used for wood energy and traditional medicine (human and veterinary); for human food, leaves and edible fruits are, respectively being used at 48.39 and 41.94%. In general, the number of species used seems higher in the Hausa ethnic group especially for food (sauce and edible fruits), craft uses (agricultural tools) and in services. The number of species used in veterinary pharmacopoeia is higher Table 1. Parts use response rate (%) by the populations of 2 ethnic groups leaving around the forests.

Creation	Hausa					Fulani				
Species	Wood	Roots	Bark	Leaves	Fruits	Wood	Roots	Bark	Leaves	Fruits
Acacia laeta	92.31	11.79	1.54	82.56	0.51	96.72	24.59	1.64	85.25	1.64
Acacia nilotica	98.46	58.46	4.62	96.41	40.00	100.00	59.02	-	100.00	16.39
Acacia radiana	56.92	2.56	-	56.92	4.10	81.97	11.48	-	80.33	1.64
Acacia senagal	96.41	4.10	0.51	94.36	1.54	100.00	3.28	-	98.36	-
Acacia seyal	92.82	2.05	0.51	95.38	1.03	100.00	4.92	1.64	100.00	-
Adonsonia digitata	58.46	1.03	-	98.97	18.97	50.82	-	-	100.00	29.51
Annona senegalensis	95.38	6.15	4.62	77.95	77.95	96.72	4.92	-	60.66	88.52
Azadirachta indica	97.44	-	-	67,69	32,82	96,72	-	-	85,25	21,31
Balanites aegyptiaca	98.46	13,85	1.03	98.46	95.38	100.00	37.70	6.56	100.00	96.72
Bauhinia rufescens	95.38	0.51	3.08	100.00	0.51	98.36	11.48	8.20	100.00	-
Bombax costatum	85.13	1.03	1.54	81.54	26.67	88.52	-	3.28	96.72	24.59
Boscia salicifolia	95.90	-	2.05	89.74	90.26	93.44	-	-	96.72	95.08
Boscia senegalensis	97.95	1.54	1.54	97.44	88.21	100.00	3.28	1.64	100.00	96.72
Cassia siberiana	84.62	5.13	74.87	33.85	0.51	85.25	4.92	81.97	18.03	-
Cassia singueana	84.62	2.56	3.59	94.36	0.51	96.72	3.28	-	98.36	-
Combretum glutinosum	100.00	30.26	3.59	95.90	4.62	100.00	45.90	-	100.00	-
Combretum micranthum	99.49	1.54	-	94.87	0.51	100.00	3.28	-	98.36	-
Commiphora africana	92.31	0.51	6.15	91.79	1.54	96.72	-	-	95.08	-
Diospyros mespiliformis	88.72	5.13	2.56	82.56	99.49	98.36	-	1.64	90.16	100.00
Faidherbia albida	99.49	12.82	1.54	99.49	88.72	100.00	16.39	-	100.00	91.80
Guiera senegalensis	99.49	23.59	2.56	98.97	-	96.72	18.03	1.64	96.72	-
Hyphaene thebaica	97.44	-	0.51	79.49	98.46	93.44	-	-	80.33	100.00
Lannea microcarpa	91.79	1.03	8.72	93.85	93.85	96.72	-	3.28	100.00	95.08
Maerua crassifolia	97.95	-	2.56	99.49	-	100.00	4.92	1.64	100.00	-
Parkia biglobosa	81.54	-	1.54	76.92	95.38	90.16	3.28	4.92	95.08	96.72
Piliostigma reticulatum	99.49	4.10	3.08	99.49	77.95	100.00	1.64	1.64	100.00	80.33
Prosopis africana	96.92	23.08	8.72	96.92	6.67	100.00	34.43	8.20	100.00	3.28
Sclerocarya birrea	98.46	0.51	2.05	98.46	94.87	100.00	-	-	96.72	95.08
Sterospermum kunthianum	94.87	2.56	4.10	91.79	6.15	98.36	8.20	-	98.36	1.64
Tamarindus indica	98.97	3.59	2.56	95.90	100.00	98.36	8.20	9.84	98.36	95.08
Ziziphus mauritiana	97.95	3.08	7.69	97.44	94.36	95.08	4.92	6.56	95.08	95.08

among the Fulani.

Use of exploited parts of woody species

The communities living around forests use different parts of woody species. For all studied species, wood, roots, bark, leaves and fruits are used (Table 1). The Kruskal-Wallis test shows that the different parts do not have the same use importance by the local communities (P<0.01). The used parts vary greatly from one species to another. The leaves of *B. rufescens*, *F. albida*, *P. reticulatum* and *M. crassifolia* are cited as the most widely used for livestock feed. Roots of *A. nilotica*, *C. glutinosum* and *P. africana* are often used in traditional medicine. Fruits that have predominantly in food uses are of *T. indica*, *D. mespiliformis*, *H. thebaica*, *P. biglobosa* and *S. birrea*.

Ethnobotanical use value

The ethnobotanical use value of 31 woody species in the two classified forests show that for Hausa ethnic group, 14 species have a high use value with TUV greater than 4.5 (Table 2). These are *B. aegyptiaca, H. thebaica, T. indica, Z. mauritiana, S. birrea, G. senegalensis, P. africana, B. senegalensis, L. microcarpa, D. mespiliformis, A. indica, B. salicifolia, A. nilotica and P. biglobosa.*

In the Fulani ethnic group, 16 species with TUV greater than 4.5 are: *H. thebaica, Z. mauritiana, B. aegyptiaca, G. senegalensis, P. africana, T. indica, D. mespiliformis, S. birrea, L. microcarpa, B. senegalensis, P. biglobosa, A. indica, A. nilotica, B. salicifolia, C. glutinosum* and *A. senegalensis.*

With regard to use categories, the test of Fisher shows

Table 2. Use value of woody species by ethnic group.

Species	На	usa	Fulani		
Species	TUV	Rank	τυν	Rank	
Acacia laeta	3.05	27	3.30	27	
Acacia nilotica	4.73	13	4.93	13	
Acacia radiana	2.15	31	2.85	29	
Acacia senegal	3.54	22	3.61	25	
Acacia seyal	3.32	26	3.26	28	
Adansonia digitata	4.06	21	3.39	26	
Annona senegalensis	4.11	20	4.56	16	
Azadirachta indica	4.89	11	4.95	12	
Balanites aegyptiaca	6.16	1	6.33	3	
Bauhinia rufescens	3.53	23	3.72	22	
Bombax costatum	2.74	29	2.85	30	
Boscia salicifolia	4.79	12	4.66	14	
Boscia senegalensis	5.38	8	5.11	10	
Cassia siberiana	1.95	32	2.51	32	
Cassia singueana	2.65	30	2.85	31	
Combretum glutinosum	4.29	16	4.64	15	
Combretum micranthum	4.14	19	4.16	19	
Commiphora africana	2.92	28	3.75	21	
Diospyros mespiliformis	5.24	10	5.62	7	
Faidherbia albida	4.20	18	4.21	18	
Guiera senegalensis	5.71	6	6.02	4	
Hyphaene thebaica	6.13	2	6.90	1	
Lannea microcarpa	5.33	9	5.38	9	
Maerua crassifolia	3.47	24	3.69	23	
Parkia biglobosa	4.56	14	5.11	11	
Piliostigma reticulatum	4.23	17	4.28	17	
Prosopis africana	5.48	7	5.79	5	
Sclerocarya birrea	5.82	5	5.46	8	
Sterospermum kunthianum	3.40	25	3.62	24	
Tamarindus indica	6.08	3	5.74	6	
Ziziphus mauritiana	5.97	4	6.38	2	

that there is no significant difference (p = 0.445) in knowledge related to woody species ethnobotanical use between ethnic groups.

Species by use category

The five most used species in each of the seven use categories by ethnic group are shown in Figure 3. It appears that, for the two ethnic groups, species like *P. africana*, *A. indica*, *A. nilotica* and *H. thebaica* are the most used/preferred by locals for handicraft (Figure 3A). Species like *G. senegalensis*, *F. albida*, *Z. mauritiana* and *S. birrea* are most used for fodder by the two ethnic groups (Figure 3D).

The most widely used species for food (Figure 3E) are: *D. mespiliformis* (fruits), *A. digitata* (fruits and leaves), *T.* *indica* (fruit), *P. biglobosa* (fruit, seeds), *S. birrea* (fruit, seeds), *B. aegyptiaca* (fruit and seeds), *L. microcarpa* (fruits) and *Z. mauritiana* (fruits). The species use index for veterinary pharmacopoeia differs from one ethnic group to another (Figure 3F).

Use of woody species by ethnic group, sex and age

For both ethnic groups, species with highest ethnobotanical use-values are: *H. thebaica*, *B. aegyptiaca*, *T. indica*, *P. africana*, *G. senegalensis*, *Z. mauritiana* and *S. birrea*.

The total ethnobotanical use-values for use categories did not differ significantly (P<0.1) by ethnic group, with the exception of veterinary pharmacopeia where there are significant difference (P<0.01) with sex and age (Table 3).

Priority species for conservation and restoration of classified forests

The priority species for restoration activities and forest conservation are presented in Table 4. Similarity between species identified as most important for the conservation by the two ethnic groups was observed (Table 4). *M. crassifolia* has been highlighted as important by the Fulani only. *P. reticulatum*, *F. albida* and *L. microcarpa* rank high for the two ethnic groups. But, the priorities expressed for forest restoration show variability between ethnic groups. Two species (*S. birrea* and *L. microcarpa*) are listed in a regular ranking order for the restoration as well as for the conservation of the forests.

There is a strong correlation ($R^2 = 0.983$, p = 0.017) priorities of ethnic groups and conservation. Meanwhile, a weak correlation was observed between species with high ethnobotanical use value and priority species for conservation ($R^2 = -0.264$, p = 0.407) and those for forest restoration ($R^2 = 0.197$, p = 0.539).

DISCUSSION

Use of parts of woody species

The plant used parts vary from one species to another, but wood and leaves are most in demand as shown in this study. Comparable results were found by Lougbegnon et al. (2011) in Benin. The harvest of these parts (roots, leaves, bark, wood) for various uses sometimes lead to lower productivity and is very often detrimental to the life of the plant. Belem et al. (2008-a) emphasize that in the Sudano-Sahelian part of Burkina Faso, fodder tree species like *S. birrea* and *B. aegyptiaca* are excessively being pollarded for fodder collection. This abusive exploitation of woody species by local communities

Figure 3. Species use indices by use category. A: Handicraft, B: Service wood, C: Wood energy, D: Fodder, E: Human food, F: Veterinary pharmacopoeia.

may be an amplifying factor of the degradation of natural forests and reduction of biodiversity (Emanuel et al., 2005; Ganaba et al., 2005). Therefore, all multipurpose species and those with high use indices deserve special attention in developing future forest management strategies.

Relative importance of multipurpose trees (based on use value)

The results of the study showed that local communities use forest resources for a variety of daily needs. This finding is in agreement with the work by Ayantunde et al.

n Handicraft		Service wood	Wood energy	Fodder	Human food	Veterinary pharmacopoeia	Human pharmacopoeia	
Ethnic group								
Hausa	195	0.20±0.36	0.27±0.34	0.90±0.23	0.81±0.28	1.37±0.73	0.68±0.11	0.85±0.13
Fulani	61	0.27±0.42	0.37±0.42	0.95±0.18	0.91±0.24	1.52±0.48	0.63±0.15	0.91±0.15
p-value		0.3727	0.2831	0.1198	0.2311	0.7822	0.1356	0.0441
Sex								
Male	163	0.22±0.38	0.31±0.35	0.93±0.21	0.85±0.27	1.59±0.50	0.70±0.11	0.89±0.11
Female	93	0.19±0.37	0.30±0.36	0.89±0.25	0.77±0.31	1.22±0.75	0.62±0.13	0.83±0.16
p-value		0.2315	0.9933	0.2398	0.1977	0.1405	0.0046	0.1249
Age								
>50 years	79	0.25±0.39	0.30±0.35	0.90±0.24	0.81±0.28	1.41±0.70	0.61±0.10	0.84±0.13
<50 years	177	0.20±0.37	0.28±0.35	0.91±0.22	0.81±0.29	1.18±0.82	0.69±0.12	0.87±0.13
p-value		0.4042	0.6005	0.6626	0.9198	0.4172	0.0083	0.3577

Table 3. Ethnobotanical use value per use category of species according to ethnic groups, sex and age (mean ± standard deviation).

Table 4. Order of decreasing ranking of the five priority species for conservation and restoration in the study area according to ethnic group.

Creatian	Priority ra	nk for resto	oration	Priority rank for conservation			
Species	Study area	Hausa	Fulani	Study area	Hausa	Fulani	
Piliostigma reticulatum	-	-	-	1	1	1	
Faidherbia albida	-	4	-	2	2	2	
Lannea microcarpa	3	1	3	3	3	3	
Maerua crassifolia	-	-	-	5	-	4	
Sclerocarya birrea	4	5	4	4	4	5	
Combretum glutinosum	-	-	-	-	5	-	
Balanites aegyptiaca	1	-	1	-	-	-	
Acacia nilotica	2	-	2	-	-	-	
Acacia senegal	5	2	5	-	-	-	
Bauhinia rufescens	-	3	-	-	-	-	

- = species not scored.

(2009) in south-western Niger, which showed that the majority of local species including lianas are used in traditional medicine, human consumption, fodder, construction and wood energy.

The ethnobotanical use value is widely recognized as a reliable tool to quantify the relative importance of a species for a community (Hoffman and Gallaher, 2007; Ayantunde et al., 2009). Species with highest ethnobotanical use values for the two ethnic groups are: *B. aegyptiaca, H. thebaica, T. indica* and *Z. mauritiana.*

Abdourhamane et al. (2013) showed, however, that these species have low density in these classified forests. Moreover, according to Ayantunde et al. (2009), when the total ethnobotanical use value of a scarce species is high, it may reflect a high pressure on the species. This indication is expected to suggest specific conservation measures to avoid overexploitation. Caution should however be taken in interpreting the results of use values, because the method does not clearly distinguish between past, present and potential uses of the species (Albuquerque et al., 2005; Belem et al., 2008-a; Camou-Guerrero et al., 2008).

Species preferences in the use categories

The study showed that in the study area, when all use categories are considered, the two ethnic groups express the same preferences for woody species with regard to use categories. This convergence between ethnic groups could be linked to a homogenization of attitudes to the environment due to cultural mixing (Faye, 2010; Gouwakinnou et al., 2011). However, in the use of species in veterinary pharmacopeia, the two ethnic

groups expressed species choice differences.

With regards to number of species per use category, both ethnic groups use the same species for fuelwood, fodder and human pharmacopoeia. The proportion of species is relatively low for other use categories by Fulani, with the exception of veterinary pharmacopoeia. This is true because Fulani ethnic group has a good knowledge in the role of plants in veterinary pharmacopoeia as well as in their lifestyle and activities. These results are similar to those obtained by Sop et al. (2012) in Burkina Faso. In the Sahelian zone of Niger, Ayantunde et al. (2009) also noted that the Fulani herdsmen use more fodder species than Zarma ethnic group who are mainly farmers.

When considering the age of the respondents class, a difference is noted in the species use value in veterinary pharmacopoeia. This difference can be explained by the level of knowledge and uses of these plants by local communities (Belem et al., 2008-a) and a good knowledge of the uses of local species by the elders (Sop et al., 2012). Several studies in semi-arid areas of West Africa reported that age is correlated to the knowledge and use of plants (Paré et al., 2010; Atakpama et al., 2012; Ayantunde et al., 2008). Indeed, the knowledge of plants accumulates over time as well as the continuous interaction with the natural environment.

S. birrea, B. aegyptiaca, H. thebaica, T. indica and Z. mauritiana are "multipurpose" tree species with the highest number of uses in the two classified forests. This prioritization by the local populations clearly highlights their status of preferred species. The "multi-purpose" character is synonymous to high preference, often resulting in increased pressure and thus the risk of decline of these species. Therefore, emphasis should be put on these species in terms of conservation and reforestation actions (Le Bouler et al., 2013) in order to meet the needs of local populations. In this regard, Non-Governmental Organisations, government and forestry research institutions should come in to develop simple vegetative propagation techniques of the best genotypes to domesticate these multipurpose species (Meunier et al., 2006; 2008-a,-b; Belem et al., 2008-b).

Species like *F. albida*, *S. birrea* and *Z. mauritiana* have the strongest use indices and very good nutritive value as fodder trees (Ouedraogo-Kone et al. 2008). These are very important species for grazing in the Sudano-Sahelian zone, easy to regenerate seminally or asexually (Bellefontaine, 2005). The current pressure linked to inadequate modes of exploitation and the climate change severely affects the structure of certain forests and multipurpose tree species such as *S. birrea*. This is also noted by Nacoulma et al. (2011) in the Sudano-Sahelian zone of Burkina Faso.

In our study area, the household energy needs are covered by wood collected in the bush. Lykke et al. (2004) and Ganaba et al. (2005) reported the preference of specific species for fuelwood in the Sahel; the current study shows that almost all available species are used. This is due to high population pressure in the area and was noted by Faye et al. (2008) in the groundnut basin in Senegal, where even baobab tree (*A. digitata*) is now used for wood energy.

Priority for forest restoration and species conservation

In Niger, woody species are an integral part of daily life of local people who maintain almost all species for their activities (Lykke et al., 2004; Larwanou et al., 2010; Larwanou and Saadou, 2011; Larwanou et al., 2012). It should be therefore noted that their preferences vary with objectives mainly for the restoration and long-term preservation of the forests. The current practice of introducing two agroforestry species (A. senegal and B. rufescens) by the Department of Environment since 2001, might have influenced the choice of local populations for restoration priorities of the forest. This indicates that the interventions by the state must reflect the needs of local stakeholders for effectiveness especially when cooperation is being developed between the technical services and local communities.

Conclusion

This ethnobotanical study showed that surrounding communities of the study areas are closely and dependently linked to the classified forests of Dan Kada Dodo and Dan Gado. The method of ethnobotanical use value has highlighted the importance of the multipurpose woody species in the study area. They play an important role in the daily life of local communities.

This study also ranked the preferred species by the people according to their own criteria. The preferred species could be integrated in the restoration and management programs of these protected forests. Therefore, their knowledge and opinions on the preferences of uses are crucial to consider in the development of future management programs of natural forests and the domestication of the best local genotypes aimed at maintaining long-term biodiversity.

Conflict of Interest

The authors have not declared any conflict of interest.

REFERENCES

- Abdourhamane H, Morou B, Rabiou H, Mahamane A (2013). Caractéristiques floristiques, diversité et structure de la végétation ligneuse dans le Centre-Sud du Niger : cas du complexe des forêts classées de Dan Kada Dodo-Dan Gado. Int. J. Biol. Chem. Sci. 7(3):1048-1068.
- Abdourhamane H, Dan GI, Morou B, Mahamane A (2014). Potential germination and initial growth of *Sclerocarya birrea* (A. Rich.) Hochst,

in Nig. J. Appl. Biosci. 76:6433-6443

- Atakpama W, Batawila K, Dourma M, Pereki H, Wala K, Dimobe K, Akpagana K, Gbeassor M (2012). Ethnobotanical knowledge of *Sterculia setigera* Del. in the Sudanian zone of Togo (West Africa). Int. Schol. Res. Network-ISRN Bot. P. 8 doi:10.5402/2012/723157
- Ayantunde AA, Hiernaux P, Briejer M, Udo H, Tabo R (2009). Uses of local plant species by agropastoralists in South-western Niger. Ethnobot. Res. Appl. 7:53-66. www.ethnobotanyjournal.org/vol7/i1547-3465-07-053.pdf
- Ayantunde AA, Briejer M, Hiernaux H, Henk M, Udo J, Tabo R (2008). Botanical knowledge and its differentiation by age, gender and ethnicity in South-western Niger. Hum Ecol. 36:881-889.
- Belem B, Smith OC, Theilade I, Bellefontaine R, Guinko S, Lykke AM, Diallo A, Boussim JI (2008-a.) Identification des arbres hors forêt préférés des populations du Sanmatenga (Burkina Faso). Bois et Forêts des Tropiques, 298(4):53-64.
- Belem B, Boussim JI, Bellefontaine R, Guinko S (2008-b). Stimulation du drageonnage de *Bombax costatum* Pelegr. et Vuillet par blessures de racines au Burkina Faso. Bois et Forêts des Tropiques, 295(1):71-79.
 - Bellefontaine R, Gaston A, Petrucci Y (2000). Management of natural forests of dry tropical zones. FAO Conservation Guide n° 32, FAO Rome, P. 318. http://www.fao.org/docrep/005/w4442e/w4442e00.htm
- Bernoux M, Chevallier T, Bégni R, Bellefontaine R., Chassany JP, Choumert G, Cornet A, Escadafal R, Fagot M, Haddock E, Malagnoux M, Réquier-Desjardins M, Tréboux M (2013). Le carbone des sols dans les régions sèches. Comité Scientifique Français de la Désertification (CSFD), P. 42. http://www.csfdesertification.org/actualites/item/dossier-csfd-carbone-sols-zonesseches
- Camou-Guerrero A, Reyes-Garcia V, Martinez-Ramos M, Casas A (2008). Knowledge and use value of plant species in a Raramuri community: a gender perspective for conservation. Hum. Ecol. 36:259-272.
- Codjia JTC, Assogbadjo AE, Ekué MRM (2003). Diversité et valorisation au niveau local des ressources végétales forestières alimentaires du Bénin. Cahiers Agric. 12(5):321-331.
- Dossou ME, Houessou GL, Lougbégnon OT, Tenté AHB, Codjia JTC (2012). Etude ethnobotanique des ressources forestières ligneuses de la forêt marécageuse d'Agonvè et terroirs connexes au Bénin. Tropicultura 30(1):41-48.
- Douglas S, Rajindra KP, Basuki I, Van Heist M, Wan M, Liswanti N, Rukmiyati, Sardjono MA, Ismayadi S, Sidiyasa K, Chrisandini, Permana E, Mangopo AE, Gatzweiler F, Brook J, Wijaya A, Edi P, Eddy MA, Gatzweiler F, Brook J, Wijaya A (2004). A la découverte, de l'environnent et des perspectives des populations locales dans les paysages forestiers : méthodes pour une étude pluridisciplinaire du paysage. CIFOR, 97pp.
- Emanuel PL, Shackleton CM, Baxter JS (2005). Modelling the sustainable harvest of *Sclerocarya birrea* subsp. *caffra* fruits in the South African lowveld. Forest Ecol. Manage. 214(1-3):91-103.
- FAO (2010). Evaluation des ressources forestières mondiales 2010. Rapport principal. Etude FAO, Forêts n° 163, Rome, Italie, P. 348.
- Faye E (2010). Diagnostic partiel de la flore et de la végétation des Niayes et du Bassin arachidier au Sénégal : application de méthodes floristique, phytosociologique, ethnobotanique et cartographique. Thèse Sc. Agro. et Ing. Biol., Université Libre de Bruxelles, Belgique, P. 266.
- Faye E, Diatta M, Samba ANS, Lejoly J (2008). Usages et dynamique de la flore ligneuse dans le terroir villageois de Latmingué (Sénégal). J. Des Sci. Technol. 7:43-58.
- Gouwakinnou GN, Kindomihou V, Assogbadjo AE, Sinsin B (2009). Population structure and abundance of *Sclerocarya birrea* (A. Rich.) Hochst. subsp. *birrea* in two contrasting land-use systems in Benin. Int. J. Biodiver. Conser. 1(6):194-201.
- Hoffman B, Gallaher T (2007). Importance of indices in ethnobotany. Ethnobot. Res. Appl. 5:201-218.
- Höft M, Barik SK, Lykke AM (1999). Quantitative ethnobotany. Applications of multivariate and statistical analyses in ethnobotany. Unesco, People and plants, working 6:35. Paris, France. http://peopleandplants.org/webcontent.
- Institut National de la Statistique (INS) (2012). Synthèse des résultats

du 4^{ème} recensement de la population et de l'habitat au Niger, P. 13. Larwanou M, Oumarou I, Snook L, Danguimbo I, Oscar EM (2010).

- Pratiques sylvicoles et culturales dans les parcs agroforestiers suivant un gradient pluviométrique nord-sud dans la région de Maradi au Niger. Tropicultura 28(2):115-22.
- Larwanou M, Saadou M (2011). The role of human interventions in tree dynamics and environmental rehabilitation in the Sahel zone of Niger. J. Arid Environ. 75(2011)194-200.
- Larwanou M, Dan Guimbo I, Oscar EM, Issaka AI (2012). Farmer managed tree natural regeneration and diversity in a Sahelian Environment: case study of Maradi region, Niger. Continental J. Agric. Sci. 6(3):38-49.
- Larwanou M, Saadou M (2012). Impacts des activités de restauration des terres sur la végétation au Niger. J. des Sci. Environn. 1 (1):1-15
- Le Bouler H, Brahic P, Bouzoubâa Z, Achour A, Defaa C, Bellefontaine R (2013). L'amélioration des itinéraires techniques en pépinière de production d'arganiers en mottes-conteneurs hors sol, pp. 124-134. *In*: Actes du premier congrès international de l'arganier, Agadir 15-17/12/2011. INRA-Maroc Ed., Rabat, Maroc, P. 516. http://www.inra.ma/Docs/actesarganier/arganier124134.pdf
- Lougbegnon TO, Tente BAH, Amontcha M, Codjia JTC (2011). Importance culturelle et valeur d'usage des ressources végétales de la réserve forestière marécageuse de la vallée de Sitatunga et zones connexes. *Bulletin de la* Recherche Agronomique du Bénin, 70:35-46.
- Lykke AM, Kristensen MK, Ganaba S (2004). Valuation of the local dynamics of 56 woody species in the Sahel. Biodiver. Conser., 13:1961-1990.
- Mapongmetsem PM, Djoumessi MC, Yemele MT, Fawa G, Doumara DG,Tchiagam-Noubissié JB, Avana Tientcheu ML, Bellefontaine R (2012). Domestication de *Vitex doniana* Sweet. (Verbenaceae) : influence du type de substrat, de la stimulation hormonale, de la surface foliaire et de la position du noeud sur l'enracinement des boutures uninodales. J. Agric. Environ. Int. Develop. 106(1):23-45.
- Mapongmetsem PM, Fawa G, Bellefontaine R (2012). Bouturage des segments racinaires de *Vitex doniana* Sweet. (Verbenaceae) : technique de multiplication végétative à faible coût. Poster, Symposium on tree product value chains in Africa: Sharing innovations that work for smallholders, Yaoundé, Cameroon, 26-28 November 2012.
- Meunier Q, Bellefontaine R, Boffa JM, Bitahwa N (2006). Low-cost vegetative propagation of trees and shrubs. Technical Handbook for Ugandan rural communities. Ed. Angel Agencies, Kampala, Ouganda and CIRAD, Montpellier, France, P. 66.
- Meunier Q, Bellefontaine R, Monteuuis O (2008-b). La multiplication végétative d'arbres et arbustes médicinaux au bénéfice des communautés rurales d'Ouganda. Bois et Forêts des Tropiques, 295(2):71-82.
- Meunier Q, Arbonnier M, Morin A, Bellefontaine R (2008-b). Trees, shrubs and climbers valued by rural communities in Western Uganda. Utilisation and propagation potential. French Embassy in Uganda and CIRAD, Montpellier, France, 106 pp.
- Nacoulma BMI, Traoré S, Hahn K, Thiombiano A (2011). Impact of land use types on population structure and extent of bark and foliage harvest of *Afzelia africana* and *Pterocarpus erinaceus* in Eastern Burkina Faso. Int. J. Biodiver. Conser. 3(3):62-72.
- Nguenang GM, Fongnzossie FE, Nkongmeneck BA (2010). Importance des forêts secondaires pour la collecte des plantes utiles chez les Badjoué de l'Est Cameroun. Tropicultura, 28(4):238-245.
- N'Klo O, Bellefontaine R, Bourg F, Nicolas D (2010). Agroforestry, basic situation, challenges and opportunities. CTA, Wageningen, Knowledge for development, http://knowledge.cta.int/en/content/view/full/11804
- Noubissié-Tchiagam JB, Bellefontaine R (2005). Pour une meilleure gestion des forêts communautaires. Appui à l'étude des diverses formes de régénération, pp. 245-254. *In*: Gouvernance et partenariat multi-acteurs en vue d'une gestion durable des écosystèmes forestiers d'Afrique Centrale. Actes de la 5^{eme} Conférence sur les Ecosystèmes de Forêts Denses et Humides d'Afrique Centrale

(CEFDHAC), Yaoundé, 24-26 mai 2004. UICN Cameroun, 2005, 429 pp.

Paré S, Savadogo P, Tigabu M, Oden PC, Ouadba JM (2010).

Regeneration and spatial distribution of seedling populations in Sudanian dry forests in relation to conservation status and human

- pressure. Trop. Ecol. 50(2):339-353. Philips O, Gentry AH (1993). The useful plants of Tambopata, Peru. II Statistical hypothesis tests with a new quantitative technique. Econ. Bot. 47(1):33-43.
- Roose E, Bellefontaine R, Visser M (2011). Six rules for the rapid restoration of degraded lands: synthesis of 16 case studies in tropical and Mediterranean climates. Sécheresse, 22(2):86-96.
- Shackleton S, Shanley P, Ndoye O (2007). Invisible but viable: recognising local markets for non-timber forest products. Int. Forest. Rev. 9(3):697-712.
- Sop KT, Oldeland J, Bognounou F, Schmiedel U, Thiombiano A (2012). Ethnobotanical knowledge and valuation of woody plants species: a comparative analysis of three ethnic groups from the sub-Sahel of Burkina Faso. Environment, Develop. Sustain. 14:627-649.

- Wezel A, Haigis J (2000). Farmers' perception of vegetation changes in semi-arid Niger. Land Degrad. Develop. 11:523-534.
- Wezel A, Lykke AM (2006). Woody vegetation change in Sahelian West Africa: evidence from local knowledge. Environment, Develop. Sustain. 8:553-567.
- Wynberg RP, Laird SA (2007). Less is often more: governance of a non-timber forest product, marula (*Sclerocarya birrea* subsp. *caffra*) in Southern Africa. Int. Forest. Rev. 9(1):475-490.