

International Journal of Medicinal Plants Research ISSN 2169-303X Vol. 8 (7), pp. 001-007, July, 2019. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Antibacterial effects of S-(-)-tulipalin B isolated from Spiraea thunbergii Sieb. on Escherichia coli, a major food borne pathogenic microorganism

Jiyoung Lee¹, Jongsung Lee¹, Jihee Lim¹, Sanghee Sim² and Deokhoon Park^{1*}

¹Biospectrum Life Science Institute, SK Ventium 101-701, #522 Dangjung Dong, Gunpo City, Gyunggi Do, Rep. of Korea.

²School of Biotechnology, Yeungnam University, Gyeongsan City, Gyeongsangbuk Do, Republic of Korea.

Accepted 08 May, 2019

The crude ethanol extract of the leaves of *Spiraea thunbergii* Sieb. (Rosaceae) showed antibacterial activity against a food borne pathogen, *Escherichia coli*. Bioactivity-guided separation led to the isolation of a butyrolaton, 1(S-(-)-tulipalin B). The structure was determined from the interpretation of spectroscopic data (UV, MS, and NMR). The minimal inhibitory concentration (MIC) of compound 1 against *E. coli* was found to be 100/ml. In addition, we found the possibility that a methylene group may operate as a key factor in the antibacterial activities of compound 1 and the hydroxyl group may exert a synergistic effect with the methylene group.

Key words: Spiraea thunbergii Sieb., antibacterial activity, butyrolactones, S-(-)-tulipalin B, Escherichia coli.

INTRODUCTION

Food borne illness resulting from the consumption of food contaminated with pathogenic bacteria has been of vital concern to public health. Among the reported outbreaks in the United States during period of 1993-1997 for which the etiology was determined, bacterial pathogens caused the largest percentage of outbreaks (75%) and the largest percentage of cases (86%) (Olsen et al., 2000). Bacteria contaminating unwashed raw food, leaking packages, hands, and surfaces, which are introduced to domestic refrigerators, may directly contaminate other stored foods or attach to and persist on the internal surface of the refrigerator posing risks of indirect longer-term contamination during subsequent food preparation activities (Michaels et al., 2001) . Of these, Escherichia coli accounted for the largest number of outbreaks, cases, and deaths.

Herbs and spices with antibacterial activity have been widely used both traditionally and commercially to increase the shelf-life and safety of foods (Brul and Coote, 1999). With the recent upturn in consumer mistrust of synthetic additives, there has been a concomitant increase in the search for new natural compounds from plants to replace existing synthetic antimicrobials (Zink, 1997).

The *Spiraea thunbergii* Sieb. (Rosaceae) complex includes seven varieties of small foliose shrubs that are widespread in eastern Asia, and are used as ornamental trees. Previous chemical investigations of *S. thunbergii* Sieb. and its varieties have led to the reporting of seven new atisane-type diterpenoids (Nie and Hao, 1998) and 37 new diterpene alkaloids of the atisine- and hetisine-types (Hao et al., 1995; Nie and Hao, 1997; Wang et al., 2000; Hao et al., 2004; Hao et al., 2005).

In order to screen plant extracts with antibacterial activities against foodborne bacterial pathogens, includeing *E. coli,* from 171 plants, a disk diffusion assay was introduced. In this study, we found that, among 171 plant extracts, *S. thunbergii* Sieb. extract had a high antibacterial activity on *E. coli* (Table 1). Therefore, we attemptted to isolate the effective compounds from *S. thunbergii* Sieb. and characterize their properties.

The present paper reports on the isolation of the constituents of the leaves of this plant and the antibacterial effects of the isolated compound. In addition, the present study of the antibacterial compound gives insight into the mode of action of this compound.

^{*}Corresponding author. E-mail: pdh@biospectrum.com.

Table 1. Antibacterial activity of 171 plant extracts using disc diffusion assay (3,000 µg/disc).

Plant	Activity	Plant	Activity
Phryma leptostachya var. asiatica		Isodon inflexus (Thunb.) Kudo	
Diospyros kaki Thunb	++	Vicia angustifolia var. segetilis	
Forsythia koreana (flower)	Pyrrosia lingua (root)		
Hypochoeris radicata L		Hedera japonica Tobler	
Pteridium aquilinum var.latiusculum	+	Houttuynia cordata Thunb	
Staphylea bumalda (leave)		Persicaria hydropiper (L.)	
Psidium guajava LINN	++	Akebia quinata (Thunb.) Decne	
Capsella bursa-pastoris	Geranium thunbergii Siebold & Zucc		+
Cinnamomum camphora Sieb	Leonurus japonicus Houtt		
Allium monanthum MAX	+ Ardisia japonica (Thunb.) Blume		
Sedum sarmentosum Bunge		Corydalis incisa (Thunb.) Pers	
Oenanthe javanica		Ligustrum obtusifolium	
Aralia elata Seem		Cassia mimosoides var. nomame	
Aralia elata Seem (bud)		Arisaema ringens (root)	
Paeonia suffruticosa		Arisaema ringens (leave)	
Sargassum fulvellum		Arisaema ringens (stem)	
Magnolia kobus		Isodon inflexus	
Mentha arvensis		Sigesbeckia pubescens Makino	
Plantago asiatica L.		Scrophularia buergeriana Mig	
Duchesnea chrvsantha	+++	Coniogramme iaponica	
Centella asiatica (L.) Urbain		Ostericum praetericum	
Selaginella involvens (sw) Spring.		Angelica iaponica	
Allium odorum		Peucedanum japonicum	
Brassica oleracea	+	Lysimachia mauritiana	
Amaranthus magostanus		Lathirus japonicus	
Eriobotrya japonica		Sophora flavenscens	+
Morus alba LINNAEUS (root)		Sida spinosa	
Morus alba LINNAEUS (leave)		Dryopteris crassirhizoma	
Dioscorea batatas DECNE.		Angelica dahurica	
Rhododendron yedoense var.		Angelies deburies	
Poukhanense (branch)		Angelica danunca	
Rhododendron yedoense var.		Angelica dahurica	
Poukhanense (flower)			
Cryptomeria japonica		Melampylum roseum	
Saururus Chinensis (Lour) Baill		Polistichum poliblepharum	
<i>Cirsium japonicum</i> var. ussuriense		Kadsula japonica	
pine needle		Pimpinella komarorii	+
Magnolla kobus	+	Dioscorea quinqueloba	
ORIENTARIS		Sedum sarmentosum	
Platycodon grandiflorum		Korth alsella japonica	
Artemisia asiatica		Perilla frutescens var. japonica	
<i>Houttuynia cordata</i> Thunb		Patrinia vilosa	
Rhododendron lateritium Planch		Helianthus tuberosus	
Acanthopanax koreanum Nakai		Sedum bulbiferum Makino	
Zea mays L.		Ficus nipponic.	
Pisum sativum L		Messerschmidia sibirica	
Prunus yedoensis (flower, branch)		Ficus carica (fruit)	
Achvranthes japonica N.		Ficus carica (branch)	

Table 1. contd.

		-	
Ulmus macrocarpa Hance		Ficus carica (leaf)	
Brassica napus L. var. oleifera	+	Orostachys iwarenge (Mak.) Hara	+
Brassica napus L. var. oleifera (root)		Dicranopteris pedatum	
Brassica napus L. var. oleifera (flower)	+	Castanea crenata (leaf, branch)	+++
Lepisorus thunbergianus		Firmiana simplex	
Albiza julibrissin	+	Quercus acuta	
Zanthoxylum piperitum		Quercus acuta (Pericarp)	
Viscum album var. coloratum		Eriobotrya japonica	
Sasa quelpaertensis Nakai		<i>Eriobotrya japonica</i> (Pericarp)	
Spiraea thunbergii Sieb	+++	<i>Eriobotrya japonica</i> (Fruit)	
Rhododendron Schlippenbachii		Eriobotrya japonica (leaf)	
Rhododendron Schlippenbachii (branch)		Achiyranthes Japonica	
Codonopsis lanceolata (S.et Z)Trautv		Circaea cordata	++
Hizikia fusiforme		Damnacanthus major	
Taraxacum Platycarpum H. dahlst		Angelica keiskei	
Cynanchum wilfordii Hemsley		Angelica keiskei	
Polygonum cuspidatum S. et Z.		Asparagus officinalis	
Magnolia obovata Thunb		Euphorbia jolkini Boissier	+
Althaea rosea		Cirsium Japonicum var. ussuriense	
Solanum migrum L.		zanthoxylum coreanum	
Aster ageratoides TURCZ		Hyloceresus undatus	
Elsholtzia splendens Nakai		Aleurites fordii	
Corydalis ochotensis		Clematis mandshurica	
Cocculus trilobus (Thunb.) DC.	+++	Siphonostegia chinensis	
Gynostemma pentaphyllum		Quercus glauca Thunb.	
Mosla punctulata (J.F.Gmelin) Nakai		Siegesbeckia glabrescens	
Gnaphalium affine D.Don		Rosa multiflora Thunb.	+++
Solidago serotina Aiton		Quercus salicina Blume	+++
Phytolacca americana L		Lillium lancifolium	
Solidago virg-aurea var asiatica		Miscanthus sinensis	
Veratrum patulum		Angelica cartilaginomarginata	
Veratrum patulum (root)		Arisaema amurense var. serratum	
Adonis amurensis Regel & Radde	+	Asparagus cochichinensis	
Phacelurus latifolius (Steud.) Ohwi		Smilax chiana	
Cassia tora L.		zanthoxylum piperium	
Microlepia strigosa (thunb.) Presl		Desmodium oldhami	
Arachniodes aristata (Forst.) Tindale		Geum aleppicum	+++
Cytromium fotunei J.		Lythrum salicaria	++
<i>Orixa japonica</i> Thunb.		Sorbus alnifolia	
Dryopteris erythrosora			

MATERIALS AND METHODS

General

The HPLC (High Performance Liquid Chromatography) system used comprised a multi- solvent delivery 600 E controller, a dual 600 pump, and a photo diode array detector (model 996). Ultraviolet (UV) spectra were obtained on a PDA (Photodiode array detector, Waters 996) instrument. The HPLC-grade organic solvents and bulk organic solvents were purchased from the Duksan and Oriental Chemical companies.

¹H and ¹³C NMR spectra were obtained on a Bruker Avance-500 spectrometer (500 MHz) using acetone-*d*₆ as solvent and tetramethylsilane (TMS) as an internal standard, and the chemical shifts were reported in (ppm) units relative to the TMS signal and coupling constants (*J*) in Hz. A complete attribution was performed on the basis of the 2 D-experiment (heteronuclear multiple bond correlation, HMBC). High resolution-mass spectrometry (electrospray ionization) or HRMS (ESI) data were measured on a JEOL HX 110A Tandem HR mass spectrophotometer at the Korea Basic

Science Institute.

Analytical thin-layer chromatography (TLC) was performed on a precoated silica gel plastic plate (0.25 mm, 60 F_{254} , E. Merck). TLC spots were visualized under a UV lamp at 254 and 365 nm, and by spraying with diluted H_2SO_4 and p-anisaldehyde with methanol reagent, followed by heating at 200 for 1 min.

Plant material

The fresh leaves of *S. thunbergii* Sieb. were collected from Jeju Island, Republic of Korea in 2005. A voucher sample has been deposited at the Jeju Bio Diversity Research Institute of the Jeju Hi-Tech Industry Development Institute.

Isolation of anti-microbial compound

The fresh leaves of the plant material (420 g) were cut into small pieces and extracted three times with EtOH at room temperature for 7 days, and filtered. The original EtOH (63.42 g) extract was evaporated to dryness *in vacuo*, and was then suspended in approximately 100 ml of water. The water suspension was partitioned three times with hexane (approximately 200 ml x 2). The residual water fraction was then partitioned three times with EtOAc (approximately 400 ml x 2). The EtOAc layer (20.62 g) was concentrated and chromatographed on a silica gel column (70 × 400 mm) with an CHCl₃-MeOH step gradient system with increasing polarity; from 2 to 7%, 10, and 15% MeOH to give nine fractions (Fraction No.1 - No. 9).

Fraction No. 7 (8.22 g) was column-chromatographed (30×310 mm) on silica gel with a gradient elution from 0% MeOH to 15% MeOH in CHCl₃ to yield eight fractions; Frs. A (78.4 mg), B (478.4 mg), C (1603.6 mg), D (661.0 mg), E (1497.6 mg), F (2456.3 mg), G (1177.7 mg), H (267.0 mg). The fifth fraction (7E) was further fractionated using C-18 MPLC (adsorbent; 200 g, Analytichem BONDESIL C18, 40 um, preparative grade, Varian, glass column; 10 mm i.d., 140 mm length) eluting with 500 ml of H₂O, then 1000 ml of 20% and 40% MeOH in H₂O and MeOH (1000 ml), respectively. The bioactive 0 and 20% MeOH in H₂O-eluted fractions were again chromatographed on a C18 HPLC column eluted with 6% ACN in H₂O (0-36 min) to yield compound 1 (25 mg).

Compound 1

Oil; Rr 0.41 (Et₂ O); UV max (H₂ O) nm (log) 204 (3.96), MS, []D, and ¹H NMR in accordance with lit. values (Tschesche et al., 1968; Tschesche et al., 1969; Hutchinson, 1974); ¹³C NMR (75 MHz, CDCl₃): 67.7 (t, C-5), 73.1 (d, C-4), 126.7 (t, C-3), 137.8 (s, C-2), 169.1 (s, C-1).

Chemicals

Purified -methylene-gamma-butyrolactone (tulipalin A) (2), gamma-butyrolactone (3), S-(-)- -hydroxy-gamma-butyrolactone

(4), *R*-(+)-alpha-hydroxy-gamma- butyrolactone (5), and *S*-(-)-hydroxy-gamma-butyrolactone (6) were purchased from Sigma (St. Louis, Mo.). Stock solutions (1 M) were made in dimethylsulfoxide (DMSO). The final DMSO concentration in the experiments was always kept below 2% (vol/vol). This concentration of DMSO did not affect the growth of bacteria.

Preparation of bacterial strains

E. coli KCTC 1039 samples used in this study were obtained from

the Korean Collection for Type Cultures (KCTC). Luria-Bertani (LB) agar and LB broth were used as culture media.

Antibacterial activity assay

The antibacterial activity was determined using both agar diffusion and broth dilution techniques as described previously by Cheesbrough (1984) and Gatsing et al. (2006).

Agar diffusion susceptibility testing was performed using the disc method. A disc of blotting paper was impregnated with 50 l of a 60 mg/ml (for crude extract) or 10 mg/ml (for pure compounds) solution of each sample dissolved in DMSO. Thus, the disc potencies were 3 mg and 500 g for crude extract and pure compounds, respectively. Erythromycin (Sigma) was used as the standard drug. After drying, the disc was placed on a plate of sensitivity testing agar inoculated with the test organism. Petri dishes were left at room temperature for about 45 min to allow the extract or the compounds to diffuse from the disc into the medium, and were then incubated at 37° C for 24 ~ 48 h, after which the zones showing no growth were noted and their diameters were recorded as the zones of inhibition.

For the broth dilution susceptibility testing, the solutions (maximum concentration) of the active compounds (i.e. the compounds that induced zones of inhibition) were prepared in DMSO and serially diluted (2-fold), then, 0.5 ml of each dilution was introduced into a test tube containing 4.4 ml of Selenite broth; 0.1 ml of bacterial suspension (5×10^5 cfu/ml) was subsequently added, and the mixture was then homogenized. The total volume of the mixture was 3 ml, with the test-compound concentrations in the tube ranging from 400 to 6.25 g/ml and those of the standard compounds, i.e. erythromycin ranging from 100 to 3.125 µg/ml, respectively. After 24 h of incubation at 37°C, the minimum inhibitory concentration (MIC) was reported as the lowest concentration of antimicrobial that prevented visible growth.

RESULTS AND DISCUSSION

Separation of the active compound was performed by a series of silica gel column chromatographic steps, with final purification performed by HPLC to yield an active compound, referred to as compound 1. When the purified compound 1 was applied to HPLC, the HPLC chromatograms again showed one peak at $R_t = 33.2$ min.

Compound 1 had an optical rotation value of -0.4° (c 0.47, H₂O) . Chemical structure of compound 1 was determined to be *S*-(-)-tulipalin B (Figure 1) on the basis of analyses of the MS, IR, ¹H, and ¹³C NMR spectroscopic data, including HMQC, HMBE, and ¹H-¹H COSY experiments. Although previous reports showed that compound 1 exists in several plants, including *Botrytis* species (Bergman and Beijerxbergen, 1968; Schönbeck and Schroeder, 1972), the existence of compound 1 in *S. thunbergii* Sieb. was reported for the first time in this study.

The absolute C-4 configuration of this compound 1 was anticipated to be *S*, because compound 1 that possesses the *S*- configuration exhibits a negative specific rotation value. Structurally similar types of bioactive compounds have been reported from *S. thunbergii* (Hiradate et al., 2004; Kim et al., 1998), *Tulips* (Bergman, 1966; Bergman et al., 1967; Bergman and Beijersbergen, 1968; Beijers

Figure 1. Chemical structures of compound 1 and other homologous compounds, 2-6.

Figure 1S. ¹H NMR spectrum of compound 1 (D2O, 300 MHz).

bergen and Lemmers, 1971; Beijersbergen and Lemmers, 1972), *Artabotrys hexapetalus* (Wong and Brown, 2002), and *Alstroemeria* (Hausen et al., 1983; Christensen and Kristiansen, 1995a; Christensen and Kristiansen, 1995b; Christensen and Kristiansen, 1995c; Christensen, 1999). However, they were not reported to have antibacterial activities. Therefore, our report is the first to indicate that compound 1 (*S*-(-)-tulipalin B) exists in *S. thunbergii* Sieb. and has antibacterial activity against *E. coli*, a major of food borne pathogenic microorganisms.

Figure 2S. ¹³C NMR spectrum of compound 1 (D2O, 300 MHz).

Table 2. Minimum Inhibitory Concentration (MIC) of the S-(-)-tulipalin B (1) and other homologous compounds, 2-6 against *Escherichia coli*.

Bacteria strains	MIC (ug/ml)							
	1	2	3	4	5	6		
E. coli	100	400	N.A.	N.A.	N.A.	N.A.		

Key. 1: S-(-)-tulipalin B, 2: alpa-methylene-gamma-butyrolactone (tulipalin A), 3: gama-butyrolactone, 4: S-(-)-alpha-hydroxy-gamma-butyrolactone, 5: R-(+)-alpha-hydroxy-gamma-butyrolactone, 6: S-(-)-beta-hydroxy-gamma-butyrolactone, N.A.: No active

Figure 3S. Partial structures of compound 1, assembled with the aid of HMBC correlations.

The MIC (minimum inhibitory concentration) of compound 1 was determined, and is shown in Table 2.

In our study, compound 1 (S-(-)- tulipalin B) exhibited antibacterial activity against *E. coli*. It also showed more activity than the compound 2 (tulipalin A). However, structurally similar types of bioactive compounds - 3, 4, 5, and 6 did not show antibacterial activity against the food borne pathogenic bacterial strains tested, even at high concentrations (Table 2).

In this assay, we found that compound 1 and 2, both of which contain a methylene group, exerted antibacterial activities against *E. coli*, while other compounds that did not contain a methylene group did not. This suggests the possibility that a methylene group may operate as a key

factor in the antibacterial activities of compound 1. In addition, the hydroxyl group of S-(-)-tulipalin B seems to exert a synergistic effect with the methylene group, because S-(-)- tulipalin B showed antibacterial activity four times higher than that of tulipalin A against *E. coli*.

In conclusion, in this study, we demonstrated that compound 1, which was isolated from *S. thunbergii* Sieb., has antibacterial activities. That is, compound 1 exhibited a strong activity against *E. coli*, one of major food borne pathogenic microorganisms. To the best of our knowledge, its antibacterial function is reported here for the first time.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Ministry of Commerce, Industry, and Energy, Republic of Korea (IH-9-12-10018068).

REFERENCES

- Beijersbergen JCM, Lemmers CBG (1971). Enzymatic liberation of tulipalin (alpha-methylenebutyrolactone), a fungitoxic substance isolated from tulips. Acta Hortic. 23: 230-234.
- Beijersbergen JCM, Lemmers CBG (1972). Enzymic and non-enzymic liberation of tulipalin A (-methylene butyrolactone) in extracts of tulip. Physiol. Plant Pathol. 2: 265-270.
- Bergman BHH, Beijersbergen JCM, Overeem JC, Sijpesteijn AK (1967). Isolation and identification of -methylenebutyrolactone, a fungitoxic substance from tulips. Recl. Trav. Chim. Pays Bas 86: 709-714.
- Bergman BHH, Beijersbergen JCM (1968). A fungitoxic substance extracted from tulips. and its possible role as a protectant against disease. Netherlands J Plant Pathol. 74: 157-162.
- Bergman BHH (1966). Presence of a substance in the white skin of young tulip bulbs, which inhibits. growth of Fusarium oxysporum. Netherlands Journal of Plant Pathol. 72: 222-230.
- Brul S, Coote P (1999). Preservative agents in foods: mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50: 1-17.
- Cheesbrough M (1984). Medical Laboratory Manual for Tropical Countries. Microbiology. Oxford, Linacre House, Jordan Hill 2: 196– 205.
- Christensen LP (1995a). Kristiansen K. Identification and quantification of the allergens (tuliposides and tuliaplin A) in alstroemeria. Acta Hortic. 420: 140-143.
- Christensen LP, Kristiansen K (1995c). Isolation and quantification of a new tuliposide. (tuliposide. D) by HPLC in. Alstroemeria. Contact Derm. 33: 188-192.
- Christensen LP, Kristiansen K (1995b). A simple HPLC method for isolation and quantification of the allergens tuliposide A and tulipalin A in Alstroemeria. Contact Derm. 32: 199-203.
- Christensen LP (1999). Tuliposides from Tulipa sylvestris and T. turkestanica. Phytochemistry 51: 969-974.
- Gatsing D, Mbah JA, Garba IH, Tane P, Djemgou P, Nji-Nkah BF (2006). An Antisalmonellal agent from the leaves of *Glossocalyx brevipes* Benth (Monimiaceae). Pak. J. Biol. Sci. 9(1): 84-87.
- Hao XJ, Fan LM, He HP, Shen YM (2005). Two New Diterpenoid Alkaloids from *Spiraea japonica* L. f. var. fortunei (Planchon) Rehd. J. Intergr. Plant Biol. 47(1): 120-123.
- Hao XJ, Hong X, Yang XS, Zhao BT. (1995). Diterpene alkaloids from roots of *Spiraea japonica*. Phytochemistry 38(2): 545-547.
- Hao XM, Fan LM, Zhang ZY, Shen YM (2004). Five diterpene alkaloids from Spiraea japonica (Rosaceae). Biochem. Syst. Ecol. 32: 75-78.
- Hausen BM, Prater E, Schubert H (1983). The sensitizing capacity of Alstroemeria cultivans in man and guinea pig. Contact Derm. 9: 46-

54.

- Hiradate S, Morita S, Sugie H, Fujjii Y, Harada J (2004). Phytotoxic ciscinnamoyl glucosides form *Spiraea thubergdii*. Phytochemistry 65: 731-739.
- Hutchinson CR (1974). Reductive amination of alpha-formyl lactones II. Synthesis of tulipalin A and B and the acylglucoside, Tuliposide A, fungitoxic agents from *Tulipa gesneriana*. Carbon-13 nuclear magnetic resonance analysis of anomeric configuration in acylglucosides. J. Org. Chem. 39: 1854-1858.
- Kim CS, Hara T, Datta PK, Itoh E, Horiike M (1998). Insecticidal component in thunberg spiraea, *Spiraea thunbergii*, against Thrips palmi. Biosci. Biotechnol. Biochem. 62: 1546–1549.
- Michaels B, Ayers T, Celis M, Gangar V (2001). Inactivation of refrigerator biofilm bacteria for application in the food service environment. Food Service Technology 1(3): 169–179.
- Nie JL, Hao XJ (1998). Diterpenes from *Spiraea japonica*. Phytochemistry 48: 1213-1215.
- Nie JL, Hao XJ (1997). Diterpene alkaloids from *Spiraea japonica* var. acuta. Acra Bot Yunnan 19: 429-432.
- Olsen SJ, MacKinnon LC, Goulding JS, Bean NH, Slutsker L (2000). Surveillance for foodborne-disease outbreaks—United States, 1993-1997. MMWR CDC Surveillance Summaries 49(SS-1): 1–64.
- Schönbeck F, Schroeder C (1972). Role of antimicrobial substances (tuliposides) in tulips attacked. by Botrytis spp. Physiol. Plant Pathol. 2: 91-99.
- Tschesche R, Kämmerer FJ, Wulff G (1969). Uber die struktur. der antibiotisch aktiven Substanzen der Tulpe (Tulipa gesneriana L.). Chem. Ber. 102: 2057–2071.
- Tschesche R, Kämmerer FJ, Wulff G, Schönbeck F (1968). Ueber die antibiotisch wirksamen Substanzen der Tulpe (Tulipa gesneriana L.). Tettahedron Lett. 6: 701-706.
- Wang BG, Hong X, Zuo GY, Hao XJ (2000). Structural revision of four diterpenoid alkaloids from the roots of *Spiraea japonica*. J. Asian Nat. Prod. Res. 2(2): 271-281.
- Wong HF, Brown GD (2002). -Methoxy- -methylene- , -unsaturated-butyrolactones from Artabotrys hexapetalatus. Phytochemistry 59(1): 99-104.