

African Journal of Medical Case Reports Vol. 8 (8), pp. 001-007, August, 2020. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Antibiogram and multidrug resistance patterns of Staphylococcus aureus (MDRSA) associated with post operative wound infections in Basrah – Iraq

Ihsan Edan Abdulkareem AlSaimary

Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq. E-mail: ihsanalsaimary@yahoo.com.

Accepted 16 April, 2020

Fifty two clinical samples collected from patients with postoperative wound infections in various age groups were examined for presence of multidrugs resistant bacteria pathogens in especially *Staphylococcus aureus*. The majority of samples were for age between 31 to 40 year (32.69%) followed by other age groups, while the lowest samples were taken from age group 1 to 10 year (5.76%) P<0.05. One hundred and thirty one isolates were identify and the main causative agents was *S. aureus* (24 isolates 18.32%), while other bacterial types isolated from postoperative wounds were as follow: *Escherichia coli* 16 (12.21%), *Klebsiella* spp. 11 (8.39%), *Enterobacter cloaeca* 8 (6.1%), *Proteus* spp. 7 (5.34%), *Pseudomonas aeruginosa* 20 (15.26%), *Staphylococcus epidermidis* 11(8.39%), *Staphylococcus saprophyticus* 8 (6.1%), *Staphylococcus xylosus* 5 (3.81%), Viridance streptococci 10 (7.63%), *Streptococcus pyogenes* 7 (5.34%) and *Enterococcus faecalis* 4 (3.05%) P<0.01. Sixteen antibiotics were used to test the resistance of *S. aureus*. Penicillin G gave 100% resistance ratio for all of 24 tested isolates, while the highly affected antibiotic was cefotaxime that gave the lowest resistance percentage (16.66%), other antibiotics had ranges of resistance between these limits P<0.01 . *S. aureus* develop a resistance mode for at least eight antibiotics. The biggest percentage of resistance was for the resistance of four antibiotics (21.18%) P<0.01.

Key words: Staphylococcus aureus MDRSA, postoperative wound infections.

INTRODUCTION

Infectious diseases still represent an important cause of morbidity and mortality among humans, especially in developing countries. Even though pharmaceutical companies have produced a number of new antibacterial drugs in the last years, resistance to these drugs by bacteria has increased and has now become a global concern. In general, bacteria have the genetic ability to transmit and acquire resistance to drugs used as therapeutic agents (Klein et al., 2007). Staphylococcus aureus is recognized as one of the major causes of infections in humans occurring in both the community and the hospital. S. aureus is a Gram-positive, catalase positive, coagulase positive, non-motile coccus bacterium that causes a variety of human infection in all age groups (Goto et al., 2009). It is the major causative agent in surgical wound infections and epidermal skin diseases in

newborn infants (Diekema et al., 2001). S. aureus infection may also be superimposed on superficial dermatological diseases such as eczema, pediculosis and mycosis (Henderson, 2006). They live as commensals in anterior naves of over half the population of humans (Lee et al., 2011). The cocci are spread from these sites into the environment by the hands, and kerchief, clothing and dust. S. aureus is an opportunistic pathogen in the sense that it causes infection most commonly in tissues and sites with lowered host resistance such as in individuals with diabetes, old malnourished persons and other chronic cases (Ghazal et al., 2011). S. aureus causes folliculitis, boil, furnculosis, scalded skin syndrome, conjunctivitis, paronychia, mastitis, and toxic shock syndrome for menstruating women who use tampons. Staphylococcal pneumonia

can occur if staphylococcal infection spreads to the lungs (Mattner et al., 2010). Hospital acquired Staphylococcal infections are common in newborn babies, surgical patients and hospital staff. Patients develop sepsis in operation wounds, which take place in the theatre during operation, and others post-operations in the ward (Chamber, 2005).

S. aureus is one of the most important etiological agents of many hospital-acquired infections as well as community-acquired infections and poses a constant therapeutic problem to clinicians (Stobberingh, 2007). In recent years, a strong correlation between isolation of S. aureus and occurrence of nosocomial infections became a constant problem to hospitals and clinical centers. Methicillin and its derivatives became the drugs of choice for the treatment of infections caused by S. aureus. The appearance of multi drugs resistant S. aureus (MDRSA) was followed by various patterns of resistance to antibiotics (Goto et al., 2009; Dietrich et al., 2004). Each year some 500,000 patients in American hospitals contract a Staphylococcal infection (Couto et al., 2000). The role of antibiotics is, however, more controversial when the skin is only colonized and not clinically infected (Henderson, 2006; Daum and Seal, 2001). Infection rate from S. aureus is high. Urgent control measures should be taken to combat the renowned etiology of both nosocomial and community acquired infection. In recent years, many isolates of S. aureus have evolved resistance to both synthetic and traditional antimicrobial chemotherapy and their prevalence outside the hospital is of potential epidemiological threat (Ghazal et al., 2011; Diekema et al., 2001). Obviously, beneficial retrospective studies on multi-drug resistance must put the available conventional antibiotics in the area into consideration. Antibiotic resistance pattern of S. aureus (coagulase positive). Antibiograms of MDRSA from hospitalized patients from 17 institutions in eight countries in Asia, Pacific and South Africa have shown that, the proportion of MRSA in this region were higher (ranging from 5.0% in the Philippines to 79.5% in Hong Kong. This proportion was higher than reported in other geographic regions contributing to over the same time: Latin America (34.9%), United States (34.2%), Europe (26.3%) and Canada (5.7%) (Diekema et al., 2001; Lee et al., 2011; Frikin et al., 2003).

Prolonged hospitalization and antibiotic therapy especially with -lactam antibiotics predispose patients to the acquisition of MDRS (Grisold et al., 2002). Hospital-acquired MDRS are usually associated with increased expression of multiple antibiotic resistance genes, including those coding for aminoglycoside resistance (Kaplan et al., 2005).

The objectives of this study were to determine the main bacterial causative agents associated with post operative wound infections and the prevalence of multi drugs resistant *S. aureus* (MDRSA) infections in patient with post operative wound infections in hospitals of Basrah

governorate with study of antibiogram and antibiotics resistance pattern of *S. aureus*.

MATERIALS AND METHODS

Clinical samples

The study was undertaken in Basrah teaching and general Basrah hospitals in Basrah governorate between June and October, 2011. Fifty two clinical specimens as a swab taken from various aged patients with different locations of post operative wounds under sterile conditions.

Bacteriological technique for isolation and identification

The swab samples were collected before wound dressing. They were inoculated aseptically into sterile brain-heart infusion as transport medium and were transported to the laboratory within two hours for analysis. The samples were analyzed using the standard bacteriological media like blood agar, heated blood agar, mannitol salt agar, MacConkey agar, etc. All the bacterial isolates thus obtained were characterized and identified by studying their cultural and morphological features from the results of Gram staining reaction, serological and biochemical tests such as catalase, coagulase, motility, oxidase, indole, citrate utilization, urease, carbohydrate oxidation/fermentation etc according to the standard techniques (Forbes et al., 2002; Cowan and Steel, 2004). The main causative agents (has a highest prevalence of isolation) were tested for their susceptibility to 16 different kinds of antimicrobial agents using disk diffusion method.

Antimicrobial agents and in vitro susceptibility pattern

Only the conventional antibiotics available for frequent use by patients in the area were considered for this study. Commercially prepared disks (Hi Media, India) were used in this study (ampicillin, penicillin G, amoxicillin, erythromycin, tetracycline, gentamicin, Chloramphenicol, rifapicin, tobramycin, neomycin, nitrofurantoin, Ciprofloxacin, cefotaxime, Amoxycillin/Clavulanic acid, vancomycin and Methicillin).

The disc diffusion method for in-vitro antibiotic susceptibility test and the evaluation of the antimicrobial susceptibility was carried according to the guidelines of the NCCLS (2002), in comparison with standard table supplies by manufacture.

Standardization of inoculums

Four pure colonies of each isolate on a 24 h plate culture were randomly selected and inoculated into 2 ml of sterile peptone water broth in Bijou bottles. This was incubated at 37°C for 6 h and the turbidity was adjusted by serial dilution in phosphate buffer saline (pH 7. 2) to match an opacity tube containing 0. 5 ml of 1% barium chloride in 1% suplhuric acid (a Mc Farlands 0.5 barium sulphate standard containing 105 cfu/ml of the inoculums). One milliliter (1 ml) of the culture dilution (bacteria suspension) was transferred into a well dried surface of diagnostic sensitivity test agar (DST) medium and tilted to spread evenly over the entire surface of the agar plate. The excess fluid was drained off and dried in incubator for less than 15 min. antibiotic discs were then placed on the surface of the inoculated plate, placed in a refrigerator to allow proper diffusion of the antibiotics and incubated aerobically at 37°C for 18 to 24 h (over-night). S. aureus NCTC 6751 Staph.epidermidis ATCC 12228 and E. coli NCTC 5933 were used as control organisms for the

Table 1. Numbers of patients according to clinical source of isolation.

Postoperative wounds/ or samples site	Numbers of patients	Percentage
Abdomen	10*	19.23
Leg	6	11.53
Arm	5	9.61
Thigh	3	5.76
Knee	4	7.69
Head	8	15.38
Neck	7	13.75
Chest	9	17.30
Total	52	100

^{*:} There are no statistical differences between sites of postoperative wounds P≥ 0.05.

Table 2. Numbers of samples of post operative wounds in relation to age.

Age	No. of samples	Percentage
1-10	3*	5.76
11-20	5	9.61
21-30	11	21.15
31-40	17	32.69
41-50	10	19.23
Over than 50	6	11.53
Total	52	100

^{*:} There are statistically differences between age group and infection P<0.05.

sensitivity test. The diameter of the zone of inhibition was measured in millimeter. The result of each antimicrobial agent tested was reported as susceptible or resistant when the test organism was compared with the control and manufacturer's manuals for interpretation.

Multiple drugs resistant S. aureus resistant (MDRSA)

The percentage of the *S. aureus* that showed multiple antibiotic resistance was estimated and recorded. The percentage resistance was calculated as follows:

Percentage resistance = (No of resistant isolates/No of isolates tested with the antibiotic) × 100

Statistical analysis

The results were statistically analyzed by using ANOVA and T-test in the SPSS (Statistical Package for the Social Sciences) package (Version 17). The present study was carried out with approvment and agreement of Ethical and Medical Committee in College of Medicine –university of Basrah.

RESULTS

Fifty two clinical cases were collected from patients with post operative wounds in various sites with various

percentages as follow:

Abdomen 10 (19.23), leg 6 (11.53), arm 5 (9.61), thigh 3 (5.76), knee 4 (7.69), head 8 (15.38), neck 7 (13.75) and chest 9 (17.30). There are no significal differences between sites of postoperative wound P≥0.05 (Table 1). Table 2 illustrates the numbers of samples in various age groups. The majority of samples were for age between 31 to 40 years (32.69%) followed by other age groups while the lowest samples were taken from age group 1 to 10 years (5.76%). There are statistically differences between age group and infection P<0.05.

In the present study, one hundred thirty one isolates were identify and confirmed diagnosed by standard techniques, these isolated were belong various genus and types as show in Table 3. The main causative agents that have a highest isolation percentages was *S. aureus* 24 isolates in percentages 18.32%, while other bacterial types isolated from postoperative wounds were as follow:

E. coli 16 (12.21%), Klebsiella spp 11(8.39%), E. cloaeca 8 (6.1%), Proteus spp 7(5.34%), P. aeruginosa 20 (15.26%), S. epidermidis 11 (8.39%), Staphylococcus saprophyticus 8 (6.1%), Staphylococcus xylosus 5 (3.81%), Viridance streptococci 10 (7.63%), Streptococcus pyogenes 7 (5.34%) and Enterococcus

Table 3. Numbers of isolates and bacterial types isolated from patient with postoperative wounds.

Bacterial types	Number of isolates	Isolating percentages
Escherichia coli	16**	12.21
Klebsiella spp	11	8.39
Enterobacter cloaeca	8	6.1
Proteus spp	7	5.34
Pseudomonas aeruginosa	20	15.26
Staphylococcus aureus	24	18.32
Staphylococcus epidermidis	11	8.39
Staphylococcus saprophyticus	8	6.1
Staphylococcus xylosus	5	3.81
Viridance streptococci	10	7.63
Streptococcus pyogenes	7	5.34
Enterococcus faecalis	4	3.05
Total	131	100

^{**} There are a highly statistically differences beween numbers of isolates among various bacterial types P<0.01.

Table 4. Antibiotic resistance patterns of *S. aureus*.

Antibiotic	Total no. of isolates tested	Numbers of resistant	Percentage (%)
Ampicillin	24	20**	83.33
Tetracycline	24	16	66.66
Gentamicin	24	10	41.66
Erythromycin	24	20	83.33
Amoxicillin	24	9	37.5
Ciprofloxacin	24	7	29.16
rifampicin	24	11	45.83
Chloramphenicol	24	15	62.5
cefotaxime	24	4	16.66
pencillin G	24	24	100
nitrofurantoin	24	10	41.66
tobramycin	24	12	50.0
neomycin	24	15	62.5
Amoxycillin/Clavulanic acid	24	5	20.83
Vancomycin	24	8	24.2
Methicillin	24	19	79.16

^{**:} There are a highly statistically differences between numbers of antibiotics resistant among Staph. aureus P<0.01.

faecalis 4 (3.05%). There are a highly statistically differences between numbers of isolates among various bacterial types P<0.01.

In Table 4, sixteen antibiotics were used to test the resistance of *S. aureus* against them. Penicillin G gave 100% resistance ratio in all of 24 tested isolates, while the highly affected antibiotic was cefotaxime that gave the lowest resistance percentage (16.66%), other antibiotics had ranges of resistance between these limits. There are a highly statistically differences between numbers of antibiotics resistant among *S. aureus* (P<0.01).

The most important results in this study were shown in Table 5. That clarifies the multiple resistance patterns of *S. aureus* against various numbers of antibiotics, *S. aureus* develop resistance modes for at lease eight antibiotics that could be become a big problem in treating staphylococcal infections. The biggest percentage of resistance was for resist of four antibiotics (21.18%). No resistance recorded for ten and eleven antibiotics, in addition, to show that resistance against one antibiotic has percentage of 12.5.There are a highly statistically differences between percentages of antibiotics resistant (P<0.01).

Table 5. Prevalence of Multiple drugs resistance isolates of *S. aureus*.

Number of antibiotics	Number of resistant isolates	Percentage
1	3	12.5**
2	2	8.33
3	2	8.33
4	3	12.5
5	5	21.18
6	4	16.66
7	2	8.33
8	2	8.33
9	1	4.16
10	0	0
11	0	0
Total	24	100

^{**} There are a highly statistically differences between percentages of antibiotics resistant P<0.01.

DISCUSSION

In the present study, the prevalence of multidrug resistance S. aureus (MDRSA) among patients with postoperative wound infections was found significantly higher. The majority of MDRSA of infection isolates found to be resistant to most of β -lactam antibiotics and resistant to more than four of non lactam antibiotics. These isolate had been designated multidrug-resistant S. aureus (MDRSA).

S. aureus remains the most prominent etiology of pyogenic infections. This organism was observed in 24 (8.32%) cases of postoperative wound infections. Cross implication of this organism in diverse clinical cases makes it of importance to the epidemiologists. Febrile noticed among the patients could just be explained as body's immunological reaction to infection. The trend of antibiotic resistant to large number of commonly prescribed antibiotics observed in this study confirmed the validity of earlier observation (Lowry, 1998). Despite the emergence of penicillin resistance in 1942, the antibiotic is still being used to treat myriads of Staphylococcal infection. The 100% penicillin G resistance observed in this research area might have emerged from he hospitals and spread to the community (Mattner et al., 2010). Even the improved form of penicillin, ampicillin had 83.33% resistance thus contributing the record of sick individuals worldwide with ampicillin resistant infection (Okeke et al., 1999). Resistance of 16.66% to the third generation cephalosporin, cefotaxime observed in this study can be attributed to abuse of antibiotics by illegal hospital within the study area since parenteral drugs are not easily abused by individuals. Incidentally, seven of the ten isolates that produced beta lactamase were resistant to all the ß-lactam antibiotics used in this study. This revealed that the resistance is purely plasmid based

ß-lactamase production is plasmid based since (Versalovic and Mason, 2005). This contributed a lot to the level of multiple drug resistance as about 21.18% of the isolates show resistance to at least four antibiotics. Consideration of the socio-demography of the patients revealed that the adult above 30 year dominated (32.69%). They can shift chemotherapy easily to drugs that are stable against ß-lactamase enzyme like fluoroguinolone which however cannot be used by the children in the first category (Peacock et al., 2002). Though higher MDRSA was observed in this study, the antibiotics could provide a better therapy than the beta lactam drugs used. The reason might not be far from the stability of the drug to beta lactamase production. The resistance however might suggest the role of mec A gene in the isolates (Rosenthal et al., 2010). In view of the foregoing, this would be chemotherapy of choice due to the observed low resistance of 20.83 and 24.2% to amoxicillin/clavulanic acid and vancomycin, respectively. The upsurge in the antibiotic resistance noticed in this study is in agreement with an earlier report (Shabina et al., 2008) where antibiotic abuse and high prevalence of self medication with antibiotics were identified as being responsible for the selection of antibiotic resistant bacterial strains.

Although, the sensitivity of the organism isolated to the third generation cephalosporin (cefotaxime) was generally excellent in the present study, the high cost of this group of drugs precludes their use as first choice in the treatment of postoperative wounds infections and septicemia, usage policy that would be made applicable to the different tiers of our health care providers at the primary, secondary and tertiary levels. This can be done concurrently with sustained enlightenment and media publicity focusing attention on the dangers of high incidence of bacterial resistance to antibacterial agents in general and the ultimate consequences.

The trends noticed in the present study is in accordance with the general trends noticed in other hospital settings (Shabina et al., 2008; Snyder, 2000; Umolu, 2002) and in Saudi Arabia (Akbar et al., 2000; Al-Mendalawi, 2010). It is noticed that MDRSA detected in the present study is higher than those reported previously in Saudi Arabia (Bilal and Gedebou, 2000; Bukharie, 2010). The emergence of MDRSA causes difficulties in the treatment of infections caused by S. aureus. Antibiotic resistantstrain is a problem for the infected patients who are responding poorly to treatment and problem to the hospital, which perform control and prevention programs. The rates of MDRSA originated from nosocomial infections Several risk factors for the acquisition of MDRSA among postoperative wound infections had been identified: Prolonged hospitalization, severe underlying illness in patients who are exposed to MDRSA in the hospital and prolonged exposure to antibiotics (Hall, 2004; Harbarth et al., 2000).

Other measures that may prevent the nosocomial transmission of MDRSA include improved antibiotic stewardship, staff cohorting, maintenance of appropriate staffing ratios, reductions in length of hospital stays, contact isolation, active microbiologic surveillance, and better staff education (Kang et al., 2005). Currently, the efficacy of many of these individual infection control interventions remains in doubt. Many studies reporting improvement in infection control outcomes (e.g. reduced transmission. decreasing prevalence) simultaneous institution of several of these measures, making it impossible to tease out the effects of any of the individual components (Kummerer, 2004; Levy, 2002). High prevalence of multiple drug resistance among isolates in the present study clearly indicated the excessive or inappropriate use of antibiotics in community (Livermore, 2005; File ,1999).

In Iraq, like in many other countries, antibiotics are readily available from the pharmacy desk. Alternatively, pharmacists prescribe medications to patients just based on their external symptoms, causing the intake of wrong antibiotic and/or over or under dosage. Moreover, in majority of cases, patients do not complete the prescribed course of antibiotics. This causes patients to be at the hospital harboring resistant strains. These strains may cause endogenous or exogenous infections in other patients.

The higher prevalence of resistance to anti-microbial agents in this environment could be due to widespread, indiscriminate use of antibiotics. The formulation and implementation of a national drug policy by Iraqi governments are fundamental to ensure rational drug use. Proper use of drugs has to be promoted by providing objective information and training (Yamasaki, et al., 2003). The idea of vaccine against Staphylococcal infection would be a welcomed development since vaccines are not usually available for abuse. It is time to embrace the use of local plant extract with proven

therapeutic and prophylactic potency (Lubbe, 2003; Wenzel and Edmond, 2000).

In conclusion, the resistance rates of *S. aureus* to antimicrobial agents among hospital acquired infections isolates were found significantly higher (p<0.01). Hospital environment is a risk factor for the prevalence of MDRSA in the hospitalized patients, visitors, and hospital staff and may spread a major risk to the community. Efforts are therefore needed to reduce the spread of MDRSA by strict application of infection control guidelines.

ACKNOWLEDGEMENTS

Authors wish to thank the surgeon, specialist and all medical staff in Alsadder teaching and Albasrah general hospitals for help with the clinical samples.

REFERENCES

- Akbar DH, Mushtaq MA, EL-Tahawi AT, Bahansy AA (2000). Staphylococcus aureus bacteremia. Saudi Med. J., 21: 171-174.
- Al-Mendalawi MD (2010). Severe community-acquired infection caused by methicillin-resistant *Staphylococcus aureus* in Saudi Arabian children. Saudi Med. J., 31: 461.
- Bilal NE, Gedebou M (2000). Staphylococcus aureus as a paradigm of a persistent problem of bacterial multiple antibiotic resistance in Abha, Saudi Arabia. East. Mediterr. Health J., 5: 945-954.
- Bukharie HA (2010). A review of community-acquired methicillinresistant *Staphylococcus aureus* for primary care physicians. J. Fam. Commun. Med., 17: 117-120.
- Chamber HF (2005). Community-associated MRSA-resistance and virulence converge. New Engl. J. Med., 352: 1485-1487.
- Couto I, Melo-cristino J, Fernades ML (2000). Unusually Large Number of Methicillin-Resistant *Staphylococcus aureus* Clones in a Portuguese Hospital Dois: 101016/50, 40-6736(01)08713-5.
- Cowan ST, Steel KJ (2004). Manual for identification of Medical Bacteria. 3rd Edition. Cambridge University Press, pp. 50-140. NCCLS (2002). National Committee for Clinical Laboratory Standards.
- Daum RS, Seal JB (2001). Evolving antimicrobial chemotherapy for Staphylococcus aureus infections: our backs to the wall. Critical Care Med., 29(4): 92-96.
- Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M (2001). SENTRY Participants Group Survey of infections due to *Staphylococcus* species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis., 32: S114-S132.
- Dietrich DW, Auld DB, Mermel LA (2004). Community-acquiredmethicillin-resistant *Staphylococcus aureus* in Southern New EnglandChildren. Pediatrics, 113: 347-352.
- File TM Jr (1999). Overview of resistance in the 1990s. Chest, 115: 3-8. Forbes B, Sahm DF, Weissfeld AS (2002). Bailey and Scott's Diagnostic Microbiology, Eleventh Edition. Mosby St. Louis. pp: 24-160.
- Frikin SK, Hageman J, McGougal LK, Mohammed J, Jarvis WR, Perl TM, Tenover FC (2003). Epidemiological and Microbiological characterization of Infection causes by Staphylococcus aureus with reduced Susceptibility to Vancomycin, United State 1997-2001. Clin. Investig. Dis., 36: 429-439.
- Ghazal SS, Hakawi AM, Demeter CV, Joseph MV, Mukahal MA (2011). Intervention to Reduce the Incidence of Healthcare-AssociatedMethicillin-Resistant *Staphylococcus aureus* Infection in a Tertiary Care Hospital in Saudi Arabia. Infect. Control Hosp. Epidemiol., 32: 411-413.

- Goto H, Shimada K, Ikemoto H, Oguri T (2009). Study Group on Antimicrobial Susceptibility of Pathogens Isolated from Respiratory Infections. Antimicrobial susceptibility of pathogens isolated from more than 10,000 patients with infectious respiratory diseases: A 25year longitudinal study. J. Infect. Chemother., 15: 347-360.
- Grisold AJ, Leitner E, Muhlbauer G, Marth E, Kessler HH (2002). Detection of Methicillin-resistant *Staphylococcus aureus* and simultaneous confirmation by automated Nucleic acid extraction and real time PCR. J. Clin. Microbiol., 79: 143-146.
- Hall BG (2004). Predicting the evolution of antibiotic resistance genes. Nat. Rev. Microbiol. 2: 430-435.
- Harbarth S, Samore MH, Lichtenberg D, Carmeli Y (2000). Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation, 101: 2916-2921.
- Henderson DK (2006). Managing methicillin-resistant staphylococci: A paradigm for preventing nosocomial transmission of resistant organisms. Am. J. Infect. Control, 34: S46-S54.
- Kang SG, Lee DY, Shin SJ, Ahn JM, Yoo HS (2005). Changes in patterns of antimicrobial susceptibility and class 1 integron carriage among *Escherichia coli* isolates, J. Vet. Sci., 6: 201-205.
- Kaplan SL, Hulten KG, Gonzalez BE, Hammerman WA, Lamberth L, Versalovic J, Mason EOJ (2005). Treatment of Staphylococcus aureus bacteremia in children. Clin. Infect. Dis. 40: 1785-1791.
- Klein E, Smith DL, Laxminarayan R (2007). Hospitalizations and deaths caused by methicillin-resistant *Staphylococcus aureus*, United States, 1999–2005. Emerg. Infect. Dis., 13: 1840-1846.
- Kummerer K (2004) Resistance in the environment. J. Antimicrob. Chemother., 54: 311-320.
- Lee AS, Huttner B, Harbarth S (2011). Control of methicillin-resistant Staphylococcus aureus. Infect. Dis. Clin. North Am., 25: 155-179.
- Levy SB (2002). Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother., 49: 25-30.
- Livermore DM (2005). Minimising antibiotic resistance, Lancet Infect Dis., 5: 450-459.
- Lowry FD (1998). Staphylococcus aureus Infection. New Engl. J. Med., 339: 520-532.
- Lubbe J (2003). Secondary infections in patients with atopic dermatitis. Am. J. Clin. Dermatol., 4: 641-654.
- Mattner F, Biertz F, Ziesing S, Gastmeier P, Chaberny IF (2010). Long-term persistence of MRSA in re-admitted patients. Infect., 38: 363-371

- NCCLS (2002). National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing: Twelfth Informational Supplements. NCCLS document M100-s12. NCCLS, Wayne, Pa.
- Okeke IN, Lamikanra A, Elderman R (1999). Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries. Emerging Infect. Dis., 5:18-27.
- Peacock SJ, Moore CE, Justice A, (2002). Virulent combinations of adhesin and toxin genes in natural populations of *Staphylococcus aureus*. Infect. Immun., 70: 4987-4999.
- Rosenthal VD, Maki DG, Jamulitrat S, Medeiros EA, Todi SK, Gomez DY, Leblebicioglu H, Abu Khader I, Miranda Novales MG, Berba R, Ramírez Wong FM, Barkat A, Pino OR, Dueñas L, Mitrev Z, Bijie H, Gurskis V, Kanj SS, Mapp T, Hidalgo RF, Ben Jaballah N, Raka L, Gikas A, Ahmed A, Thu le TA, Guzmán Siriti ME; INICC Members (2010). International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. Am. J. Infect. Control., 38(2): 95-104.
- Shabina H, Naveet W, Sunil A, Surendra KS, Rakesh L, Ravindra M, Pandey AK (2008). Epidemiology of nosocomial infections in medicine intensive care unit at a tertiary care hospital in northern India. Trop. Doct., 38: 233-235, doi:10.1258/td.2008.070395.
- Snyder JW, McDonald LC, Van Enk R (2000). Common bacteria whose susceptibility to antimicrobials is no longer predictable. Leban. Med. J., 48: 208-214.
- Stobberingh EE (2007). The molecular evolution of methicillin resistant *Staphylococcus aureus*. Clin. Microbiol. Infect., 13: 222-235.
- Umolu PT, Okoli EN, Zomoh IM (2002). Antibiogram and betalactamase production of Staphylococcus aureus isolates from different human clinical specimens in Edo State, Nigeria. West Afr. J. Med., 12: 124-127
- Versalovic J, Mason EOJ (2005). Treatment of *Staphylococcus aureus* bacteremia in children. Clin. Infect. Dis., 40: 1785-1791.
- Wenzel RP, Edmond MB (2000). Managing antibiotic resistance. New Engl. J. Med., 343: 1961-1963.
- Yamasaki S, Takeda Y, Dzidic S, Bedekovic V (2003). Horizontal gene transfer-emerging multidrug resistance in hospital bacteria, Acta Pharmacol. Sin., 24: 519-26.