

Advanced Journal of Microbiology Research ISSN 2241-9837 Vol. 12 (9), pp. 001-010, September, 2018. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Antibiotics susceptibility of bacterial pathogens associated with otitis media

Ihsan E. Alsaimary¹*, Ahmed M. Alabbasi² and Jassim M. Najim¹

¹Department of Microbiology, College of Medicine, University of Basrah, Republic of Iraq. ²Department of Surgery, College of Medicine, University of Basrah, Republic of Iraq.

Accepted 12 August, 2018

One hundred twenty patients with chronic suppurative otitis media (CSOM) in Basrah, 65(54.2%) males and 55(45.8%) Females, with male: females ratio (1.2:1) and 60 individual without ontological problems as control group were included in this study, which was done during the period of March, 2009 to January, 2010. This Include collection of aural swab samples, culturing of samples, identification of causative agents species and antibiotic sensitivity. Gram's negative bacteria were the commonest microorganisms; it comprises (60%). *Pseudomonas aeruginosa* was common causative agent (19.04%), followed by *Staphylococcus aureus* (16.7%) and *Klebsiella* spp. (14.3%). Mixed infection was found in high percent (74%), in which *P. aeruginosa* and other microorganisms were more common. The antibiotic sensitivity pattern showed that *P. aeruginosa* was sensitive to Ciprofloxacin, amoxicillin +clavulanic acid and gentamicin, while other is appeared resistant, *S. aureus* was sensitive to ciprofloxacin, amoxicillin+clavulanic acid, erthomycin, cephalexine and it is resistant to pencillin and ampicillin, *klebsiella* species were sensitive to ciprofloxacin, amoxicillin +clavulanic acid ,gentamicin,while resistant to tetracycline.

Key words: Antibiotics, bacteria, otitis media.

INTRODUCTION

Otitis media is inflammation of the middle ear. This is most commonly caused by the buildup of fluid behind the ear drum, as a result of a blockage to the Eustachian tube. Otitis media is more common in children, as their Eustachian tube is shorter and more horizontal than adults and is made up of more flaccid cartilage, which can impair its opening. (Bluestone and KLien, 2001) Otitis media can cause a mild to moderate hearing loss, due to the fluid interfering with the transmission of sound through to the inner ear. It can often affect the tympanic membrane causing it to retract or become inflamed. The fluid can cause the tympanic membrane to bulge and become inflamed and occasionally the tympanic membrane will perforate .There are three common types of otitis media, acute purulent otitis media, otitis media with effusion and chronic suppurative otitis media (Berman, 1997).

CSOM, for the purposes of this document, defined as a chronic inflammation of the middle ear and mastoid cavity, which presents with recurrent ear discharges or otorrhoea through a tympanic perforation (Howard, 2007). The disease usually begins in childhood as a spontaneous tympanic perforation due to an acute infection of the middle ear, known as acute otitis media which presents with a rapid onset of signs and symptoms, such as pain, fever, irritability; a red bulging ear drum and middle ear effusion (Jahn, 1991).

In CSOM, the bacteria may be aerobic (e.g. *Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, Proteus mirabilis, Klebsiella species*) or anaerobic (e.g. Bacteroides, Peptostreptococcus, Proprionibacterium) (Saunders et al., 2009; Brook, 1996).

The present study aimed to identify the bacterial pathogens associated with CSOM, studies the antibiotic susceptibility pattern of antibiotic against bacterial pathogen, and determined the mode of bacterial isolation and multi drugs resistant bacteria.

^{*}Corresponding author. E-mail: ihsanalsaimary@yahoo.com. Tel: 00964 07801410838.

Table 1. Bacterial types isolated from healthy person (control group).

Microorganisms	No. of isolates	(%)
<i>Klebsiella</i> spp.	2*	4
Streptrococcus spp.	3	6
<i>E. coli</i> spp.	2	4
<i>Bacillu</i> s spp.	8	16
S. epidemedis.	20	40
Corynebacterium spp.	15	30
No growth	10	16.66
Total	60	100

* P < 0.01.

Table 2. Bacterial type isolated from patients with CSOM.

Caustive agents	No. of isolates	(%)
P. aeruginosa.	40*	19.41
S. aureus.	35	16.99
Klebsiella spp.	30	14.56
Br.catarrhalis.	20	9.70
Proteus spp.	20	9.70
H.influenzae.	20	9.70
Streptococcus spp.	15	7.28
E.coli spp.	10	4.85
Corynebacterium spp.	08	3.88
Bacillus spp.	08	3.88
Total No. of isolates	206	100

** x² = 49.8 P < 0.01.

MATERIALS AND METHODS

Patients

A total of 120 patients with CSOM were included in this study, the diagnosis of CSOM was carried out according to clinical examination by otoscopic and tuning fork examination, and audiological investigation (pure tone audiometry and tympanometry under supervision of specialists of ENT.

Microbiological investigation includes (culture, identification of causative agents and antibiotic sensitivity. The study was carried out in Basrah General Hospital, out patients E.N.T. clinic, during the period from March, 2009 to January, 2010,

Control group

A total of 60 individuals without ontological problems, 30 males and 30 females in various age group, they were regarded as a control group

Sampling

Two groups were included in this study:

Group (1) 120 aural swabs were taken from infected ear of CSOM

patients.

Group (2) 60 aural swab taken from a control group

Swabs were taken under sterile condition and transfer immediately to the laboratory by brain heart broth for aerobic bacteria, thioglycollate broth for anaerobic bacteria, and cultured on suitable media at 37°C for 24 to 48 h.

Primary isolation on (Blood agar, chocolate agar, nutrient agar), then on selective media identification and biochemical characterization were carried out according to standard routin techniques (Fingole and Baron, 2002).

Note: All media were sterilized by autoclave (121°C under 15 lbs pressure for 15 min). Antibiotics disc:

1. Penicillin G 10 mg (Bioanalyse).

2. Erythromycin 15 mg (Bioanalyse).

3. Tetracycline 30 mg (Bioanalyse).

4. Ciproflaxin. 5 mg (Bioanalyse).

5. Gentamicine 10 mg (Bioanalyse).

6. Ampicillin 10 mg (Bioanalyse).

7. Augminten 20 mg (Bioanalyse).

8. Trimethoprim 25 mg (Bioanalyse).

9. Streptomycin 10 mg (Bioanalyse).

10. Lincomycin 2 mg (Bioanalyse).

Statistical analysis

In order to determine the statistical significance among different variables, SPSS program (statistical program for social sciences) ver.11, was used for this purpose. The following statistical testes were performed:

Chi-square (x^2) test and the difference between two proportions by T-test were used to assess the significance of difference between groups. P-value less than 0.05 was considered as statistically significant (S), P-value < 0.01 as highly significant. (HS), P-value < 0.001 as extremely significant (ES). P- value more than 0.05 was considered as statistically not significant (NS).

RESULTS

Table 1 show results of isolated bacterial from (60) healthy persons. The following bacteria were isolated, *Staphylococcus epidermidis* 20 isolates (40%), flowed by *Corynebacterium* species 15 isolate (30%). Other types distributed according to species in Table 3 to 8. 10 samples gave negative result for bacteria culture (16.66%).

Pathogenic bacteria isolated from patients with CSOM

The occurrence of various bacterial isolate among CSOM patients -illustrate in Table 2, presents that P. aeruginosa was more frequently isolates 40(19.41%), while S. aureus Pseudomonas 35(16.99%), followed Klebsiella *B.* catarrhalis 20 (9.70%), 30(14.56%), Proteus 20(9.70%), Heamophilus influenzae 20 (9.70%), Streptococcus spp. 15(7.28%), E. coli 10(4.85%), Corynebacterium 8 (3.88), and Bacillus 8 (3.88).

Couloctive acout			Types of hearing I	oss
Causative agent	No. of isolates	CHL	SNHL	MXHL
P. aeruginosa	40	5	12	1
S. aureus	35	6	10	9
<i>Klebsiella</i> spp.	30	4	10	8
B. catarrhalis	20	5	8	3
Proteus spp.	20	8	6	3
H. influenzae	20	6	4	5
Streptococcus spp.	15	4	6	2
E. coli	10	3	4	1
Corynebacterium spp.	8	3	3	1
Bacillus spp.	8	2		1

Table 3. Relationship between caustive agents and hearing loss.

CHL: Conductive hearing loss, SNHL: Senserineural hearing loss, MXHL: Mixed hearing loss.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	40	30*(75)	10 (25)
Augmentin	40	21(52.5)	19(47.5)
Gentamicin	40	20(50)	20(50)
Vancomycin	40	8(20)	32(80)
Lincomycin	40	9(22.5)	31(77.5)
Cephalexin	40	11(27.5)	29(72.5)
Penicillin	40	10(25)	30(75)
Erythromycin	40	12(30)	28(70)
Ampicillin	40	14(35)	26(65)
Tetracycline	40	13(32.5)	27(67.5)
Streptomycin	40	6(15)	34(85)
Trimethoprim	40	5(12.5)	35(87.5)

Table 4. Antibiotic susceptibility pattern of *P. aeruginosa*.

X² = 25; P < 0.01.

Bacterial pathogens and hearing impairment

The occurance of various caustive agents isolates among CSOM patients in three types of hearing loss (CHL, SNHL, MXHL) is presented in Table 3.

P. aeruginosa was more frequently isolated in senserineural and profound hearing loss (25 to 26.2%), while in conductive and mixed hearing loss (16.7 to 20.4%) *S. aureus* isolates, appeared more frequently among CSOM patients with conductive and mixed hearing loss (20.4 to 25%) than in senserineura and profound hearing loss (12.5 to 15%) *Klebsiella* species and other organisms isolated in various percentages from these three types of hearing loss.

Antibiotic sensitivity of P. aeruginosa

However, Table 4 shows that the frequency of Ciprofloxacin,

Amoxicillin + clavulanic acid (Augmentin) and Gentamicin ere statistically significantly higher than other types of antibiotics P < 0.01 in percentages of sensitivity between (50 to 75%) (P < 0.01), while 88% of *P. aeruginosa* isolates was resist trimethoprim, 85% to Streptomycin and 80% to Vancomycin,while other pattern of resistance were between 25 to 78% of various antibiotics P < 0.01.

Antibiotic sensitivity of S. aureus

Table 5 shows that in each drugs group the frequency sensitivity of Ciprofloaxacin, Augmenten, Cephalexin and Penicillin, (57 to 80%) were statistically significantly higher sensitive than other antibiotic. (P < 0.01),while 83% of *S. aureus* isolates was resist trimethoprim, 83% to Streptomycin and 83% to Vancomycin,while other pattern of resistance were between 20 to 77% of various antibiotics P < 0.01.

Drugs type	No. of isolated	Sensitive (%)	Resistant (%)
ciprofloxacin	30	20* (66.66)	10 (33.34)
Augmentin	30	21(70)	9(30)
Gentamicin	30	16(53.33)	14(46.67)
Vancomycin	30	06(20)	24(80)
lincomycin	30	08(26.66)	22(73.34)
Cephalexin	30	12(40)	18(60)
Penicillin	30	10(33.34)	20(66.66)
Erythromycin	30	09(30)	21(70)
Ampicillin	30	11(36.66)	19(63.34)
Tetracycline	30	10(33.34)	20(66.66)
Streptomycin	30	10(33.34)	20(66.66)
Trimethoprim	30	08(26.66)	22(73.33)
0			

 Table 6. Antibiotic susceptibility pattern of Klebsiella spp.

X² = 25; P < 0.01.

Table 7. Antibiotic susceptibility pattern of Branhamella spp.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	20	15* (75)	05 (25)
Augmentin	20	15(75)	05(25)
Gentamicin	20	10(50)	10(50)
Vancomycin	20	06(30)	14(70)
lincomycin	20	08(40)	12(60)
Cephalexin	20	12(60)	08(40)
Penicillin	20	10(50)	10(50)
Erythromycin	20	09(45)	11(55)
Ampicillin	20	11(55)	09(45)
Tetracycline	20	10(50)	10(50)
Streptomycin	20	06(30)	14(70)
Trimethoprim	20	05(25)	15(75)

X² = 25; P < 0.01.

Antibiotic sensitivity of Klebsiella spp.

Table 6 shows that in each drugs group the frequency of sensitivity of Ciprofloxacin and Augmentine (67 to 70%) were statistically significantly higher than other type of antibiotic drugs (P < 0.01), while 73% of *Klebsiella* spp. isolates was resist trimethoprim, 70% to Erythromycin, and 80% to Vancomycin, while other pattern of resistance were between 30 to 73% of various antibiotics P < 0.01.

Antibiotic sensitivity B. catarrhalis

Table 7 shows that in each drugs group Ciprofloxacin, Augmentin, Cephalexin, Ampicillin, gentamicin were statistically significantly higher sensitivity (50 to 75%) against *Branhamella* spp. than other type of antibiotic (P < 0.01), while 75% of *Branhamella* spp. isolates was resist trimethoprim, 70% to Streptomycin and 70% to vancomycin, while other pattern of resistance were between 25 to 60 of various antibiotics P < 0.01.

Antibiotic sensitivity Proteus spp.

Table 8 shows that in each drugs group the frequency of ciprofloxacin, augmentin, gentamicin and Trimethoprim were statistically significantly higher effective against *Proteus* spp. than other type of Antibiotics, (60 to 70%) sensitive (P < 0.01), while 75% of *Proteus* spp. isolates was resist Ampicillin, 70% Erythromycin, and 75% to Penicillin, while other pattern of resistance were between 30 to 60% of various antibiotics P < 0.01.

Antibiotic sensitivity H. influenzae

Table 9 shows that in each drugs group the frequency

Table 8. Antibiotic susceptibility patte	ern of Proteus spp.
--	---------------------

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	20	14*(70)	06(30)
Augmentin	20	12(60)	08(40)
Gentamicin	20	12(60)	08(40)
Vancomycin	20	10(50)	10(50)
lincomycin	20	10(50)	10(50)
Cephalexin	20	08(40)	12(60)
Penicillin	20	05(25)	15(75)
Erythromycin	20	08(40)	12(60)
Ampicillin	20	05(25)	15(75)
Tetracycline	20	10(50)	10(50)
Streptomycin	20	08(40)	12(60)
Trimethoprim	20	10(50)	10(50)

Table 9. Antibiotic susceptibility pattern of *Heamophilus* spp.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	20	15* (75)	5 (25)
Augmentin	20	12(60)	8(40)
Gentamicin	20	12(60)	8(40)
Vancomycin	20	10(50)	10(50)
Lincomycin	20	10(50)	10(50)
Cephalexin	20	8(40)	12(60)
Penicillin	20	8(40)	12(60)
Erythromycin	20	10(50)	10(50)
Ampicillin	20	6(30)	14(70)
Tetracycline	20	6(30)	14(70)
Streptomycin	20	4(20)	16(80)
Trimethoprim	20	7(35)	13(65)

X²= 25; P < 0.01.

of ciprofloxacin, augmentin, gentamicin, vancomycin and lincomycin (50 to 75%) were statistically significantly higher sensitive drugs against *H. influenzae* than other (P < 0.01), while 80% of *H. influenzae* isolates was resist to Streptomycin, 70% Tetracyclin, and 70% to Ampicillin, while other pattern of resistance were between 25 to 65% of various antibiotics P < 0.01.

Antibiotic sensitivity Streptococcus spp.

Table 10 shows that in each drugs group the frequency of ciprofloxacin, augmentin, pencillin, erythromycin and tetracycline were statistically significant higher sensitive (67 to 80%) than other type of Antibiotics (P < 0.01), while 60%, of *Streptococcus* spp. isolates was resist to trimethoprim, streptomycin, 53.33 and 46% to Ampicillin, while other pattern of resistance were between 20 to 40% of various antibiotics P < 0.01.

Antibiotic sensitivity E. coli

Table 11 shows that in each drugs group the frequency of Ciprofloxacin, Augmentin, Gentamicin, Lincomycin and Cephalexin were statistically significantly higher sensitive drugs (60 to 80%) against *E. coli* than other type of drugs (P < 0.01), while 80%, of *E. coli* spp. isolates was resist to Streptomycin, 60% to Trimethoprim, and 60% to ampicillin, erythromycin and penicillin, while other pattern of resistance were between 20 to 40% of various antibiotics P < 0.01.

Antibiotic sensitivity Corynebacterium spp.

Table 12 shows that in each drugs group the frequency of ciprofloxacin, cephalexin, erythromycin, ampicillin and penicillin were statistically significantly higher sensitive drugs (75%) against Corynebacterium spp. (P < 0.01),

Table 10. Antibiotic susceptibility pattern of Streptococcus spp.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	15	12* (80.00)	3(20.00)
Augmentin	15	10(66.66)	5(33.34)
Gentamicin	15	10(66.66)	5(33.34)
Vancomycin	15	9(60.00)	6(40.00)
Lincomycin	15	9(60.00)	6(40.00)
Cephalexin	15	10(66.66)	5(33.34)
Penicillin	15	10(66.66)	5(33.34)
Erythromycin	15	10(66.66)	5(33.34)
Ampicillin	15	8(53.33)	7(46.67)
Tetracycline	15	9(60.00)	6(40.00)
Streptomycin	15	7(46.67)	8(53.33)
Trimethoprim	15	6(40.00)	9(60.00)

X² = 10.8; P < 0.01.

Table 11. Antibiotic susceptibility pattern of *E. coli*.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	10	8* (80)	2(20)
Augmentin	10	8(80)	2(20)
Gentamicin	10	8(80)	2(20)
Vancomycin	10	6(60)	4(40)
Lincomycin	10	6(60)	4(40)
Cephalexin	10	6(60)	4(40)
Penicillin	10	4(40)	6(60)
Erythromycin	10	4(40)	6(60)
Ampicillin	10	4(40)	6(60)
Tetracyclin	10	4(40)	6(60)
Streptomycin	10	2(20)	8(80)
Trimethoprim	10	4(40)	6(60)

X² = 25; P < 0.01.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)
Ciprofloxacin	8	6* (75.0)	2(25.0)
Augmentin	8	6(75.0)	2(25.0)
Gentamicin	8	4(50.0)	4(50.0)
Vancomycin	8	3(37.5)	5(62.5)
Lincomycin	8	3(37.5)	5(62.5)
Cephalexin	8	4(50.0)	4(50.0)
Penicillin	8	6(75.0)	2(25.0)
Erythromycin	8	6(75.0)	2(25.0)
Ampicillin	8	6(75.0)	2(25.0)
Tetracycline	8	4(50.0)	4(50.0)
Streptomycin	8	5(62.5)	3(37.5)
Trimethoprim	8	5(62.5)	3(37.5)

 Table 12. Antibiotic susceptibility pattern of Corynebacterium spp.

X² = 45.4; P < 0.01.

Drugs type	No. of isolates	Sensitive (%)	Resistant (%)	
Ciprofloxacin	8	6 *(75)	2(25)	
Augmentin	8	4(50)	4(50)	
Gentamicin	8	6(75)	2(25)	
Vancomycin	8	4(50)	4(50)	
Lincomycin	8	4(50)	4(50)	
Cephalexin	8	4(50)	4(50)	
Penicillin	8	4(50)	4(50)	
Erythromycin	8	6(75)	2(25)	
Ampicillin	8	6(75)	2(25)	
Tetracycline	8	5(62.5)	3(37.5)	
Streptomycin	8	4(50)	4(50)	
Trimethoprim	8	6(75)	2(25)	

Table 13. Antibiotic susceptibility pattern of Bacillus spp.

 $X^2 = 1.26; P > 0.05.$

Table 14. Modes of isolation of the bacterial pathogens among patients with CSOM.

Madaa of icelated		No. of patients (%)		
Modes of isolated —	Male	Female	Total	
Single causative agent	18*(15.00)	20 (16.66)	38(31.66)	
Double causative agent	30(25.00)	25 (20.83)	55 (45.83)	
Three causative agent	12 (10.00)	6 (05.00)	18 (15.00)	
More than three	5(04.16)	4 (03.33)	9(07.50)	
Total	65(54.16)	55(45.83)	120(100)	

P < 0.01.

while 63%, of *Corynebacterium* spp. isolates was resist to Lincomycin, 63% to Vancomycin and 50% to Gentamicin and Cephalexin, while other pattern of resistance were between 25 to 38% of various antibiotics P < 0.01.

Antibiotic sensitivity *Bacillus* spp.

Table 13 shows that in each drugs group the frequency of ciprofloxacin, erythromycin, ampicillin, and trimethoprim were statistically significantly higher sensitive drugs (75%) against *Bacillus* spp. than other type of drugs (P < 0.01), while 50%, of *Bacillus* spp. isolates was resist to Lincomycin, 50% to Vancomycin and 50% to Cephalexin, Penicillin and Streptomycin, while other pattern of resistance were 25 to 37.5% of various antibiotics P < 0.01.

Types of infection according to number of causative agent

Table 14 show that the frequency of double causative agents (55 isolates, 45.83%) was statistically significantly

higher than single causative agent (38 isolates 31.66%), three causative agents (18 isolates, 15%) and more than three (9 isolates, 7.5%).there was no difference between male and female in the frequency of various types of mode of isolates.

Bacterial agents and antibiotics

Table 15 shows that in each isolates group the frequency of susceptibility to antibiotic. *P. aeruginosa* was statistically significantly higher resistance than other bacterial isolates (10.19%) flowed by *S. aureus* (8.73%), *Klebsiella* (7.76%), *B. catarrhalis, Proteus, H. influenza* (6.97%), *Streptococcus* spp. (4.85%), *Corynebacterium* (0.9%) and *Bacillus* spp. (0.9%) P < 0.01

DISCUSSION

Chronic suppurative otitis media develops from a chronic bacterial infection. However the bacteria that caused the initial episode of acute otitis media with perforation are usually not those isolated from the chronic discharge
 Table 15. Relationship between causative agents and antibiotics (resistance patterns).

Bacterial isolate type	No. of Isolates	Susceptibility to drugs							T . ()		
		(1) drug		(2) drugs		(3) drugs		More than (3) drugs		Total	
		R	S	R	S	R	S	R	S	R	S
P. aeruginosa	40	1	2	2	3	8	6	10	8	21(10.19)	19(9.22)
S. aureus	35	2	3	2	4	6	5	8	5	18(8.73)	17(8.25)
Klebsiella	30	1	3	2	3	5	4	8	4	16(7.76)	14(6.79)
B. catarrhalis	20	2	1	3	1	4	2	5	2	14(6.97)	6(2.91)
Proteus spp.	20	2	1	3	1	4	2	5	2	14(6.97)	6(2.91)
H. influenza	20	2	1	3	1	4	2	5	2	14(6.97)	6(2.91)
Streptococcus spp.	15	2	1	2	1	3	2	3	1	10(4.85)	5(2.42)
<i>E. coli</i> spp.	10	2	1	1	2	1	1	2	0	6(2.91)	4(1.94)
Corynebacterium spp.	8	1	2	0	1	1	1	0	2	2(0.9)	6(2.91)
Bacillus spp.	8	1	2	0	2	1	1	0	1	2(0.9)	6(2.91)

when there is a chronic infection in the middle ear and mastoid infection usually polymicrobial and secondary in nature, derived from the external auditory canal or commensal flora of nasopharynx (Bluestone and KLien, 2001). The infection causes a buildup of fluid in the middle ear .The pressure exerted by this fluid can build up to the point where the ear drum perforated .The fluid buildup and ear drum perforation inhibit the transmission or conduction of sound through the ear (Howard , 2007).

Our result goes with study which done by Guo (1994) and Engel (1998), that show most patients with CSOM infected by more than one pathogenic bacteria leading to hearing loss, about 40 patients, (33.4%) of patients with CSOM suffered from bilateral hearing loss, while (80 patients, 66.6%) patients with CSOM have unilateral hearing.

Guo et al. (1994) studied found the effect of endotoxic damage to the stria vascularis and concluded that lipopolysaccharide induced strial ototoxicity produced ion imbalance ,causing changes in endolymph composition and energy failure in the middle and inner ears organ explaining the pathogenesis of hearing loss in CSOM. Engel et al. (1998) studied the passage of streptolysin-O and albumin through the round window membrane and proposed that the passage of macromolecule, such as protease, from purulent middle ear effusion may be facilitated by pore forming toxins, resulting in middle and inner ear organs damage and hearing loss.

Karma et al. (1978) have used gram stain not only to confirm the presence of cultured bacteria but to detected and identify them as well, gram stain smear were obtain from 108 ear swab; in 98 (91%) of them bacteria were found Seven of the 108 ear swab (6%) were devoid of bacteria both in culture and in the Gram stain.

Papastavros et al. (1986) indicated that this practice considerable error, because non viable bacteria can be as equally incriminated as the main pathogens present. Furthermore, if the patient is under antimicrobial treatment. In our study, the different type of bacterial flora in the external canal were found; *S. epidermidis* is the most common with 20 isolates (40%), followed by *Corynebacterium* species about (15 isolates, 30%), while other type have various percentages of isolation. Our result is agreed with Pelton et al. (1980) and Brook et al. (1996) while it is against the result is of Saunders et al. In our study, it

while it is against the result is of Saunders et al. In our study, it was found that *Klebsiella* species isolated from patients suffering from chronic suppurative otitis media was 30 isolates (14.56%). Our patients infected by Enterobacteriaceae such as *Klebsiella*

species, most of them among children and infants group,

(2009). Pelton et al. (1980) and Brook et al. (1981) showed that the predominant microflora were *S. epidermidis, Diphtheroid* and *S. aureus.*

In the present study, the number of P. aeruginosa isolates was 40 isolates (19.41%). our result agreement with studies done by Aslam et al. (2004) and (Verhoeff, 2006) that Pseudomonas most common agents in patients with CSOM, and not approved with Saunders et al. (2009) found S. epidemedis most common causative agents. Aslam et al. (2004) showed that P. aeruginosa is most common isolates from infected mastoid cavity and chronic otitis media and most common aerobic bacteria isolated from chronic suppurative otitis media. Verhoeff et al. (2006) stated that P. aeruginosa was the most prevalent bacteriological agent in chronic otitis media, flowed by S. aureus. Saunders et al. (2009) stated that S. epidermidis species was the most prevalence bacteriological agent in chronic otitis media.

In this study we found that *S. aureus* 35 isolates (16.99%) followed *P. aeruginosa* in their incidence, our result agree with study done by Aslam et al. (2006), while against the study done by Saunders et al. (2009). Saunders et al. (2009) found that *S. epidemidis* (6%) was the most common bacteria isolated from patients with suppurative otitis media, followed by methicillin resistant *S. aureus* (3%) and *P. aeruginosa* (1%).

because the Eustachian tube in children shorter and wider than adult.

Bluestone et al. (1974) showed that young children have shorter, straighter and more compliant Eustachian tube than adult. This permits a reflex from nasopharynx to the middle ear with the consequence of bacterial contamination. Brook and Yocum (1989) found that Klebsiella species (6.2%) isolate from patients with CSOM while Ostfeld and Rubinstein (1980) stated (20%) of Klebsiella species presented in young infant with acute otitis media, but rarely appear in the middle ear effusion of older children with otitis media.

In our work, we found that Branhamella catarrhalis was 20 isolates (9.7%). Faden (1994) found that Moraxella or Branhamella catarrhalis were common organisms and that Diplococcus was considered part of the normal flora of human upper respiratory tract, classified as causative agents to middle ear infection, it had constituted approximately 10% of all isolates. Hanan (2000) showed that М. catarrhalis secreted lactamases (cephalosporinases) may protect these bacteria and other type from antimicrobial agents to which the second target pathogen ordinarily might be suscebtible, can be differentiated from the other Neisseriae spp by its lack of carbohydrate fermentation and by its of DNase production.

In our study, we found that *Proteus* species was isolated with 20 isolates (9.7%). Iseh and Adegbite (2004) found that *Proteus* species (12.8) isolated from 41 patients with acute suppurative otitis media. Vaishnav and changani (1981) found *Proteus* species with highest incidence (44%) of isolates from 100 cases with CSOM.

In our result, we found that *H. influenza*e was 20 isolates (9.7%), while *S. pneumonia* (15 isolates 7.28%). (Yamanaka et al., 2008) showed that *H. influenza*e and *S. pneumonia* are the most prevalent organisms responsible for acute otitis media. However, most studies from different parts of Africa suggest: Various bacterial pathogens as causative agents. Hence, *S. aureus* and *S. pyogenes* appear to be most dominant causative organisms among Africans (Hussain et al., 1991). Bluestone and Klein (2001) found that *S. pneumonia* and *H. influenzae* are most common bacteria species causing middle ear infection in acute otitis media. Some European studies found *H. influenzae* to be the most common organism followed by *S. pneumonia* and *B. catarrhalis* (Gray and Canter, 1997).

In this result, we found that the frequency of E. coli was (10 isolates 4.85%) isolated from patients with chronic Е. suppurative otitis media. coli belona to Enterobacteriaceae, pathogenic causative agent in acute suppurative otitis media in children and infant (Bluestone, 1990). Iseh (2004) found E. coli in patient s with acute suppurative otitis media second causative agent, Ear swab was cultured in only 41 patients (36%). S. aureus (46.2%) was the commonest bacteria cultured followed by E. coli (23.1%).

In our result, we found that Corynebacterium and Bacillus

species were (8 isolates 3.88%). for each presents in externa canal and middle ear cleft as opportunistic normal flora in individual without ontological problems. Brook and Schwartz (1981) showed that *Corynebacterium* species was predominant in external canal and middle ear cleft, while Kurono et al. (1988) isolated 12 different bacterial species, in which *Bacillus subtilis* from middle ear cleft and external canal.

The organisms that cause otitis media are become more resistant to antibiotic. For example, according to recent studies, between (30 to 60)% of S. pneumoniae bacteria are now partially resistant to the antibiotic such as penicillin and amoxicillin. Antibiotic lose their effectiveness in children who have been continuous treated with them in a short period of time .Ciprofloxacin and Augmenten (amoxicillin-clavulante) is more abundant bactericidal agent for many Gram positive and Gram negative bacteria in AOM, CSOM (Gehaanno, 1997; Winter, 1994). 90 to 95% of cases of acute otitis media (AOM) with otorrhoea occur in children aged (1 to 12) years, and typically (2 to 6) episodes of AOM. Ciprofloxacin is an effective and safe therapy for AOM and chronic suppurative otitis media (CSOM) (Force et al., 1995). The efficacy and safety of a combination of topical dexamethasone 0.1% and ciprofloxacin 0.3% in children with (AOM), otorrhoea resolved more rapidly with combination preparation than with ciprofloxacin alon and produce significantly greater clinical responses early after completion of seven days course of treatment (Zipfel, 1999).

In this study, we noted Ciprofloxacin, (Amoxicillin + clavulanic acid) Augmentin, Gentamicin were abroad spectrum antibiotic (70 to 80%) sensitive to different species of Gram negative and Gram positive bacteria in CSOM. Topical treatment is better than systemic therapy, this probably because a higher local concentration of antibiotic is achieved (Macfadyen et al., 2006). The antibiotic should have activity against Gram negative bacteria, especially *Pseudomonas*, and gram positive bacteria, especially *S. aureus*. The amino glycosides and the fluoroquinolones both meet these criteria but the former may be ototoxic, failures of the antibiotic are usually due to failure to penetration the debris rather than bacterial resistance (Marais et al., 1998).

Aminoglycosides are contraindicated there is evidence that they may cause hearing loss (Bance et al., 2005).

REFERENCES

- Aslam MA, Ahmed Z, Azim R (2004). Microbiology and drug sensitivity patterns of chronic suppurative otitis media. J. Coll. Physicians Surg. Pak., 14(8): 459-61.
- Bance M, Rutka JA (2005). Topical treatment for otorrhoea: issues and controversies. J. Otolarngol., 34(2):52-55.
- Berman S (1997). Classification and criteria of Otitis Media. Clin. Microbiol. Infect (Suppl)., 3: 1-4.
- Bluestone CD, Klein JO (2001). Microbiology. In: Bluestone CD, Klein JO, eds. Otitis Media in Infants and Children. 3rd ed. Philadelphia, P A: W. B. Saunders., pp. 79-1014.

- Bluestone CD, Klient J (1990). Otitis media, atelectasis and Eustachian tube dysfunction. In: Bluestone CD, Stool SE (eds). Peadiatric otolaryngology. Saunders; Philadelphia, pp. 320-447.
- Bluestone CD, Beery QC, Andrus WS (1974). Mechnics of the Eustachian tube as it influences susceptibility to and persistence of middle ear effusions in children. Ann. Oto. Rhinol. Laryngol., 83: 1-4.
- Brook I, Frazier E (1996). Microbial dynamics of persistent purulent otitis media in children. J. Pediatr., 128(2): 237-240.
- Brook I, Yocum P (1989). Quantitative bacterial culture and Betalactomase activity in chronic suppurative otitis media. Ann. Otol. Rhinol. Laryngol., 98: 293.
- Brook I, Schwartz R (1981). Anaerobic bacteria in acute otitis media. Acta Otolaryngol., 91: 111.
- Canter RJ (1997). Acute suppurative otitis media. In: Booth JB (ed). Scott-Brown's otolaryngology. Butterworths, London, 3(9): 1-7.
- Faden H, Harabuchi Y, Hong JJ, Pediatrics TW (1994). Epidemiology of Moraxella catarrhalis in children during the first 2 years of life: Relationship to otitis media. J. Infect. Dis., 169: 1312-1317.
- Fingold SM, Baron EJ, Baily S (2002), diagnostic microbiology 10th ed. Tornto, St-Louis: m Moby company, pp. 150-170.
- Force RW, Hart MC, Plummer SA (1995). topical ciprofloxacin for otorrhea after tympanostomy tube. Placement Archotolaryngol. head Neck surg., 121: 880-884.
 Gehaanno P (1997). The French study group.efficacy and safety of
- Gehaanno P (1997). The French study group.efficacy and safety of ciproflaxin in the treatment of CSOM in adult. Otolaryngol. Head Neck surg., 117: 83-90.
- Gray RF (1997). Acute and chronic suppurative otitis media in children. In: Adams DA, Cinnamond MJ (eds). Scott-Brown's otolaryngology: Pediatric Otolaryngology. Btterworths, London. 6(8): 1-21.
- Guo Y, Wu Y, Chen W (1994). Endotoxine damage to the stria vascularis the pathogenesis of SNHL secondary to otitis media JLO, 108(4): 310-30.
- Hanan A (2000). Babay,isolation of Moraxella catarrhalis in patients at King Khalid University Hospital, Riyadh. Saudi med. j., 21: 860-863.
- Howard D (2007). Intercultural cumunication and Conductive hearing loss. J. First Peoples Child Family Rev., 3(4): 97.
- Hussain MA, Ali EM, Ahmed HS (1991). Otitis media in Sudanese children: Presentation and bacteriology. East Afr. Med. J., 68(9): 679-685.

- Iseh KR, Adegbite T (2004). Acute suppurative otitis media: A clinical profile Sokoto, Nigeria. Annals med. J., 4: 164-166.
- Jahn AF (1991).Chronic otitis media: diagnosis and treatment. Med. Clin. North Am., 75(6): 1277-129.
- Karma P, Jokipii L, Ojaka K, Jokipii AM (1978).Bacteriology of the chronically discharge middle ear. Acta. Otolaryngol., 86: 110.
- Kurono Y, Tomonago K, Magi C (1988). Staphylococcus epidermidis and Staphylococcus aureus in otitis media with effusion. Arch. Otolaryngol. Head. Neck Surg., 114: 1262.
- Macfadyen CA, Acuin JM, Gamble C (2006). Systemic antibiotic ,topical treatments for chronically discharging ears with underlying eardrum perforation., (1) :CD005608.
- Marais J, Rutka JA (1998). Ototoxicity and topical ear drop. Clin. Otolaryngol. Allied Sci. Aug., 23(4): 360-367.
- Ostfeld E, Rubinstien E (1980). Acute Gram-Negative Bacillary Infection of Middle Ear and Mastoid. Ann. Otol.Rhinol. Laryngol., 89: 33.
- Papastavros TM, Giamarellou H, Variejides S (1986). Role of aerobic and anaerobic microorganisms in chronic suppurative otitis media. Laryngoscope, 7(5): 438.
- Pelton SI, Teele DW, Shurin PA, Klein JO (1980). Disparate culture of middle ear fluids Am. J. Dis. Child., 134: 951.
- Saunders JE, Raju RP, Boone J, Berryhill W (2009). Current Bacteriology of Suppurative Otitis: Resistant Patterns and outcomes Analysis, Otology& Neurotology, 30(3): 339-343.
- Vaishnav SK, Chhangani DL (1981). Evaluation of bacteriological status in chronic suppurative otitis media. Indian J. Pathol. Microbial, 24: 113.
- Verhoeff M, Van der V, Rovers MM (2006). Chronic suppurative otitis media: A review. Int. J. Pediatr. Otorhinolaryngol., 70(1): 1-12.
- Winter SM, Nahata MC (1994). Chronic suppurative otitis media. Ann. pharmacother., 28: 1089-99.
- Yamanaka N, Hotomi M, Billal DS (2008). Clinical bacteriology and immunology in acute otitis media in children. J. Infect. Chemother., 14(3): 180-187.
- Zipfel TE, Wood WE, Street DF (1999). Effect of topical ciprofloacin on post operative otorrhoea after tympanostomy tube insertion, 20: 416-420.