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This paper describes a methodology designed to support the decision -making process by developing seaport 
infrastructure to meet future demand. In order to determine an optimum number of berths at a sea port, the queuing 
theory is applied in the light of port facilities and activities. The aim is to avoid inadvertent over and under-building. 
Within this methodology, the movements in port should firstly be analyzed. The waiting time of vessels outside the 
port and in queue is calculated in accordance with the considered queuing model. The theoretical functions 
representing the actual vessel arrival and service time distributions are determined. For the economic considerations, 
cost estimate studies including cost of port and waiting vessels are carried out. Finally, the optimum number of berths 
that minimizes the total port costs can be decided. Both proposed mathematical and economical models are applied 
to Alexandria port in Egypt. 
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INTRODUCTION 

 
The port transportation system includes different physical 
elements, e.g. berths, handling equipments, storage and 
traffic facilities. Although the capacity of any single ele-
ment may be expressed as an absolute figure, such as 
the number of containers loaded per hour by a certain 
crane, the aggregate capacity of the whole port cannot be 
so simply described. Each element can limit the overall 
port productivity.  

Port productivity can be viewed from two standpoints. 
To ship operators, productivity implies the time needed at 
the port to serve ships, while at national level, port 
productivity can be defined as the amount of cargo 
transported through the port during a certain time period.  

Port development is often affected by operating policies 
as well as by the traffic demand imposed in the port in 
terms of the volume of cargo expected to be accom-
modated, the service time at the available berths within 
which this volume should be handled, and the frequency 
of ships arrivals. 

It would be possible to develop the port facilities so that 
its capacity is fully utilized at all times. In this manner, 
changes in demand have to be accommodated by forcing 

ships to wait (at anchorage) until ships that arrived 
previously had been serviced. This policy would be 

 
 
 

 
inefficient and uneconomic due to the delay costs of 
waiting ships. Conversely, developing the port so that 
ships are never forced to wait also represents an 
uneconomic use of port resources.  

The ideal situation is one in which all berths are 
occupied at all times and no ship is ever kept waiting. 
This situation is impossible to achieve in practice 
because of the random arrivals of cargo ships and the 
variations in service time of ships of different sizes. 
Therefore, decisions concerning port development can be 
made by trading-off the cost of increasing the port 
capacity and the costs of both waiting and service times.  

The purpose of this paper is to introduce a methodo-

logy which can be used to facilitate the decision-making 

process of port development. The proposed methodology 

covers two principal areas: 
 
a) Investigation of the pattern of ship traffic at a seaport 
from the standpoint of queuing theory, and to use the 
findings to draw some hypotheses regarding its 
application to the overall operation in sea ports.  
b) Determination of the optimum number of berths 

needed in a sea port that will minimize the total port 

usage costs. 
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Figure 1. Ship queue at a seaport.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Ships arrival distribution as poisson function, hypothetical 

port. 
 
 

 

ANALYSIS OF SHIPS' MOVEMENT IN A SEAPORT 

 

An important parameter measuring the performance of a 
seaport is the delays that ships experience while waiting 
to be processed. Two factors affect these delays: (a) the 
pattern of ships arrival, and (b) the berth time requirement 
for cargo handling.  

The arrival of a cargo ship in a port is often irregular, 
and when it arrives, it may be able to move directly onto a 
berth or has to wait until a berth becomes empty, if all 
berths are occupied. The berth time needed to serve a 
ship is also variable, as it depends on the amount of 
cargo which the ship carries and the capacity of the 
present facilities for handling and storing cargo (Gokkup, 
1995). Figure 1 shows ship behavior at a seaport.  

The investigation of such random occurrences requires 

a complex and detailed analysis. The concept of 
“Queuing theory-waiting line problem” can successfully 

be applied. Queuing Theory is one of the most useful 

 
 
 
 

 

tools for analyzing the behavior of waiting units (ships in 
this case), for investigating the components of a multiple 
operation system (Branislav and Nam, 2006). Thus, 
queuing theory may be adequate for studying ship 
movement in sea ports.  

Two basic elements are necessary for the application of 
queuing theory to a waiting line problem: an arrival 
function and a service function. These functions should 
first be modeled. Once the validity of these models is 
tested, the different characteristics of the theoretical 
models, which describe the actual system with the accu-
racy that may be realized in estimating future traffic, can 
then be determined.  

To analyze the movement of ships in a sea port using 

the queuing theory, the following conditions are assumed: 
 
i) Ships arrivals and service times conform to the pattern 
of random occurrences. 
ii) Ships are processed on the “first-come first-served” 
queue discipline. 
iii) The queue length is unlimited, that is, if a ship arrives 

and finds a long queue, it joins the waiting ships and does 

not leave the port. 
 

 

Modeling ship arrival 
 
Probably the two most commonly encountered arrival 
patterns of ships in a sea port are the random and 
scheduled arrivals with considerable delays. Thus, to 
predict the number of ships present in a port in a certain 
time period (usually a day), the arrival pattern of ships 
may be approximated by a Poisson function (Tadashi, 

2003) . In this way, the probability Pn of the arrival of n 

ships in the port in a given time can be expressed as in 
Figure 2: 
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Where  
 = average arrival rate of ships during the given time 
(one day, for example),
e = base of the natural logarithm (e = 2.71828...), 

n = the average arrival rate of n ships, and;

n = the factorial of the ship number.
 
The distribution of ships arrivals with Poisson function 
can be calculated, only if the average arrival rate during 

an entire period is known. The expected frequency Fn of 
n ships in port in a given time T is: 
 

Fn   T. Pn 

 

T is the considered time period of the port operation 

(often expressed on an annual basis as 365 days). 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Service time distribution as Erlang Function, hypothetical port. 
 

 

Modeling of service time 

 

The duration of ships at a berth for handling cargo may 
be described as an Erlang-function (Son and Kim, 2004) 
which is usually used to present service times that are 
more regularly spaced in time than those represented by 
the Poisson distribution.  

There are purely theoretical curves (Erlang-functions), 
each of which is based on the assumption that the 
service time is split into two or more operating phases 
following one another, and that the ship does not leave 
the berth until all phases are completed. “k” is the number 
of “Erlang Phases” of ships service time distribution at a 
berth. Each function has a negative exponential 
distribution. As “k” increases, the total service times 
become more uniform, until finally with k = all service 
times are identical. In the general case the total service 

time probability P0 is given in Figure 3. 
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Where 

b = Average berth service time (in days), 
k = Erlang number (k = 1, 2, 3, …., ), and; 
n = Counter. 

for k = 1, 
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Through the choice of k, a service time function may be 
described as anything from the purely random 
exponential type (k = 1) to the completely regular 
constant service time type (k = ), the value of k should be 
selected and tested to provide the best fit to the 

 
 

 

observed data. 
 

 

QUEUING PHENOMENON 

 
As the nature of the problem is defined, in this paper, as 

multi-channels (berths), with exponential arrivals (Poisson), 

and multiple exponential services (Erlang), no feasible 

mathematical solution is possible (Zoran and Branislav, 

2005). The theoretical models available in the literature for 

multi- channel systems are inflexible for other than expo- 

nential distribution of arrivals and multiple exponential 

service time distribution. For investigating queuing situa-

tions of multi-channel systems, models are accessible only 

for the following two cases: 
 
Case : Exponential distributions for both arrivals and 
service times.  
Case II: Exponential arrivals and a constant service time. 
 

An approximate method has recently been proposed 

regarding the queuing model of case II (Wen-Chih et al., 

2007). The essential parameters are derived as follows: 
 

 = Average arrival rate in ships/day (Poisson-
distribution),
 = Average service rate in ships/day (Erlang-distribution)

= 1/ average berth service time = 1/ b, and; 
S = Number of berths. 
 
The ratio of the arrival rate to the service rate is usually 

known as the traffic intensity, thus: 
 



 

 
 
In this case, it can be noted that the average waiting time 

before service wk is given by (Erlang function) (Wen-Chih 



 
 
 

 

et al., 2007): 
 

   
 

 

Where, 

w1 is the correction of the average constant service time 
obtained by selecting an Erlang-function with constant k 

number. w1 can be calculated from the following function, 
(Wen-Chih et al., 2007): 
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Where, n = actual number of ships present in a port in a 
certain time period.  
Thus the average time that a ship spends in seaport ts 
can be determined as follows: 
 

ts   b  wk 

 

From the above analysis of delays in the queue, 
computation can readily be made of the average length of 
queue, that is,for average number of ships waiting for a 

berth nw, the appropriate expression is: 
 

  
 

The average number of ships ns present in port with S 

berths in a certain time period can be determined using 

the following formula: 
 

 

 

Where, 
nb = average number of n ships served at S berths 

= S × berth utilization factor  

= S. (/(.S) = . 
 

Thus, it is seen that the traffic intensity,  defined in the 
queuing theory equals the average number of ships 

served at berths nb. 
 

 

ANALYSIS OF PORT CAPACITY 

Minimum capacity 

 

The minimum number of berths Smin needed in a seaport 

to handle a certain amount of cargo can be calculated 

using the following procedure: 
 

Let Q = the total amount of cargo (in tons) handled in a 

port section in a time period T (for example, T = one year 

 
 
 
 

 

= 8760 h), and R = average rate of cargo transfer 

between ship and berth (in tons per hour). Then, 

 

  
 
 

Thus, the gross berth time available is “Smin. T”. 

 

Then, let  (berth utilization) equal the % of berth usage 

throughout the period T. 

 =  (berth  time  required)/  (berth  time  available),  or 
 

 

Q 
 

   

Smin .(R.T ) . 
 

In this manner, the calculated number of berths is based 

on average values; regardless of the random arrivals of 

ships and the variation in berth service times. 
 

 

Optimum capacity 

 

If the number of berths in a port is S, the total cost spent 
in the port during a certain period, C equals the sum of 
two different types of costs: cost related to berths and 
cost related to ships present (Jan and Robert, 2002). 
Thus, it can be expressed as (Figure 4): 
 

C  Cb. T .S  Css 

 

In which, 
C = total cost of a port with S berths during the period T, 
usually one year = 365 days, (in L.E.), 

Cb = average cost of a berth; that is, construction and 
maintenance costs (L.E./day/berth),  
cs = average delay cost of a waiting ship (L.E./day/ship), 
and;  
ns = average number of ships present in port. 
 

Accordingly, if the amount of cargo that must be dealt 
with at a port during the period T is given as time 
planning target, then such number of berths S becomes 
the optimum that minimizes the total cost C. Therefore, C 
is a proper measure to examine the optimality of a port 
system. 

Now, both sides of the above equation are divided by 

“Cs.t” in order to decrease the number of the parameters 
involved. Thus, 
 

Rs = C / (CS.T) = ) (cb/cS).S + s = (rbs. S) + 

s In which, 

rs = ratio of the total annual cost for port to annual ship 
cost, and 
rbs = berth-ship cost ratio.  
Assuming that S is optimum, then the following 
optimization condition must be held: 

rs < rs + 1, and rs < rs-1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Total usage cost, hypothetical port. 

 

 

Thus, rs will be adopted hereafter as a measure to 

determine the optimum number of berths.  
From the preceding information the procedure can be 

standardized as follows when given the data Q, R, cb, cs, 

, , k: 
 

Step 1. Calculate the minimum number of berths from the  

Smin   
Q

 
 

equation, 
R.T

 .  

Step 2. Determine the value of traffic intensity  as; (  




 ). 
 
Step 3. Compute the value of berth-ship cost ratio rbs 

from the given data cb and cs. 
Step 4. For each number of berths, with S greater than 
the minimum value, estimate the number of ships present 

in port ns, and predict the ratio rs.  
Step 5. The number of berths which satisfies the 

optimization condition (rs < rs+1, and rs < rs-1) is optimum. 
Step 6. Compute the average berth utilization, : 

  


  . 
 
Step 7. Summarize the queuing results (average number 

of ships present in the port, average number of ships at 

berths, average number of waiting ships, average waiting 
time). 
 

 
APPLICATION OF THE PROPOSED METHODOLOGY TO 

ALEXANDRIA SEAPORT 
 
The foregoing methodology is applied to investigate the movements 
of ships in Alexandria Port and to predict the future capacity. The 
application is restricted to general cargo ships, excluding full-
container, bulk, and RO/RO ships which have particular berths at 
the port.  

Alexandria Port is the major port in Egypt. About 40.80 million 

tons passed through the port in the year 2007/2008, that is, 36% of 

the total volume of the foreign trade. The amount of general cargo 

 
 

 
 

 
handled in the port in that year was 4.326 million tons (Egyptian 
Maritime Data Bank, 2008). 

Alexandria port is constituted of an old and complicated layout 
with short quays and too narrow or too long piers. A large number 
of quays has limited drought less than 8.0 meters, and only a lower 
number of berths is capable to receive ships with more than 130.00 
meter length. The number of berths available for general cargo in 
the port is 32 berths. 

 

Data base 
 
The daily “log books” of the traffic department of the Alexandria Port 
Authority include (among others) the arrival time of each ship at the 
pilot vessel. In addition, detailed information concerning the move-
ment of each ship in the port is also available in the so-called “ship 
log sheets”. Every sheet is a ship report, and it contains the 
following data: 
 
a) Ship name, nationality, type of cargo, and total tonnage. 
b) Berth occupancy, including berth changes during the period in 
port. 
c) Date and time of arrival, berthing, and quitting the port. 

 

Ships arrivals 
 
If the distribution of ships arrivals can be predicted reliably, port 
planner can proceed with great confidence in making development 
plans that may avoid over-building or under-building the port 
facilities.  

The actual pattern of ship arrivals at the port of Alexandria is 
compared with the theoretical function prognosticated 
mathematically by Poisson distribution of random occurrences. The 
application includes a specific analysis of the number of ships 
present, day by day, over a period of one year (from July 1, 2007 to 
June 30, 2008).  

The number of ships present in the port, each day, was trans-
cribed from the port “log books” and then summarized to obtain the 
number of days, that various number of ships were present during 
the period studied. The theoretical distribution, Poisson is 
computed.  

Table 1 compares the predicted distribution with the actual one. 
The average arrival rate was 5.68 ships per day. Table 1 shows a 
good agreement between actual and predicted distributions. The 
number of days that various numbers of ships are predicted to be 
present in the port is in agreement with the actual distribution on 
336 days of 360 days, that is, on 92% of days.  

To judge whether the observed frequencies of ship arrival 
distribution is compatible with the predicted theoretical frequencies, 

Chi-square is computed, and the result, x
2
 = 20.0 with 10% 

probability, indicates a good fit. From the statistical standpoint, pro-
bability values between 5 and 95% designate good fit from which it 
is concluded that this theoretical distribution is plausible (Tadashi, 
2003). Figure 5 demonstrates the goodness of fit between actual 
and predicted distributions. 

 

Berth service times 
 
Information giving the date and time of arrival at a berth and the 
date and time of departure from the berth were obtained from the 
“ship log sheets”. A total of 315 observations, including those 
general cargo ships which were tied up at the berths between July 
1, 2007 and June 30, 2008 were randomly selected to be analyzed. 
A class interval of 15 hours was selected for such analysis.  

Search for a suitable model for the distribution of the durations at 

berths led to an Erlang distribution giving K = 3. The mean time 



 
 
 

 
Table 1. Comparison of actual versus predicted ship arrival distribution.  

 

 Arrival rate Actual number of days Predicted number Minimum (A) or 

 (Ships/day) (A) of days (B) (B) 

 0 1 1 1 

 1 6 7 6 

 2 18 20 18 

 3 27 37 27 

 4 49 54 49 

 5 73 62 62 

 6 60 59 59 

 7 61 47 47 

 8 37 34 34 

 9 15 21 15 

 10 9 12 9 

 11 5 6 5 

 12 2 3 2 

 13 2 2 2 
 Total 365 365 336 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Frequency Distribution of Ships Arrivals, Alexandria Port 

2007/2008  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Frequency distribution of berth service time, 

Alexandria port 2007/2008. 

 

 
spent at a berth was found 5.58 days for the 315 observations. The 
standard deviation of the distribution was computed and found to be 
± 1.43 days. Figure 6 presents the frequency and the cumulative 
distributions of the observed data and compares the values of the 
cumulative distribution with those of the Erlang function having K = 
3. 

A Chi-square test was also performed to test the goodness of fit 
between the observed frequency distribution and the postulated 

Erlang function, and a value X
2
 = 14.87 for 42% probability was 

found. Comparison with other Erlang functions (K = 1, K = 2, and K 
= 4) indicates that K = 3 is the best choice for this distribution 
function. Figure 6 also shows the observed data points and a plot of 
the selected function. 

 

Optimum number of berths 
 
To establish the optimum number of berths needed for general 

cargo handling at Alexandria port in the year 2017, applying the 

proposed procedure, the following input data are used: 
 
i) Due to the further development of the Egyptian ports, particularly 
the Dekheila port, the annual general cargo tonnage to be handled 
at the berths of Alexandria port will be only about 4.00 million tons 
at the target year (tonnage in year 2007/2008 = 4.326 million tons) 
(Egyptian Maritime Data Bank, 2008).  
ii) The average arrival rate of general cargo ships will be 5.68 ships 
/day, assuming that the average ships load equals 2084 tons (the 
present value).  
iii) The average rate of cargo handling at a general cargo berth R = 
373.5 tons per day (the existing rate). 
iv) The average cost of a berth cb = 2000 per day (approximately 
$600 per day), based on the development program of the 
Alexandria port (Egyptian Maritime Data Bank, 2008).  
v) The average delay cost of a general cargo ship cs = $ 6000 per 

day. 

 
The calculations are carried out as follows: 
 
Smin = 4000 000/(373.5 × 365) = 29.34 = 30 berths  
 = 5.68 ships/day



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Determination of optimum number of berths, , Alexandria port, case study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Determination of Optimum Number of Berths, due to different cost 

ratio, rbs, Alexandria Port, Case Study. 
 

 
 = 1/5.58 = 0.18 ships/day 

= 5.68/0.18 = 29.35

rbs = 600/6000 = 0.10

 
Figure 7 shows the relationships between traffic intensity and the 
cost ratio rs for a proper number of berths (from S = 29 to S = 34) 
The optimum port capacity is 33 berths. In this instance, rs = 34.34, 
and the total port costs C = $75.200 million (the development of 33 
berths plus the annual maintenance costs). 
 
The average berth utilization = 29.35/33 = 0.89 
 
Queuing results: 

 
 

 
changing the traffic intensity and/or the cost ratio rbs.  

The optimum number of berths corresponding to a suitable cost 
ratio rbs values (from 0.10 to 0.30) is noted in Figure 8. It can also 
be seen that a 33-berths set is the optimum port capacity in case of 
traffic intensity values varying between 27.58 and 29.60.  

Table 2 shows the calculation of the costs of idle berths and idle 
ships for 33 berths in view of the expected frequency (number of 
days per year). It also presents the combined costs (vacant berths 
and ships) in case of port size 31, 32, 33 and 34 berths. The cost 
comparison indicates that the total port cost is least when there are 
33 berths. This conclusion confirms the result previously obtained 
by applying the proposed methodology. 

 

Average number of ships present in port ns = 31.04 
Average number of ships served at berths nb = 2935 
Average number of waiting ships nw = 1.69 
Average waiting time per ship wk = 0.32 days 
 
The relationships in Figure 7 are prepared as design curves derived 

to determine the optimum number of berths for Alexandria port by 

  
RESULTS CONCLUSIONS 
 
This paper presents a methodology proposed to predict 

the optimum number of berths required in a sea port to 

meet the future traffic volumes. The methodology is 

based on the hypothesis that the number of berths can 



 
 
 

 
Table 2. Cost calculation in case of 33 berths, and the comparison of the resulting value with those for 31, 32 and 34 berths.  
 

Arrival  
Berth 

Required Over-building Under-building 
 

rate Predicted frequency (in days) number of Number Berths- Number  
 

utilization Ships-days 
 

(ships/day) 
 

berths of berths days of ships  

   
 

 F =  ÷   33 – F . (33 –  )  - X
*
 F . ( - X

*
) 

 

0 1 0.00 0 33 33   
 

1 7 0.17 6 27 189   
 

2 20 0.34 12 21 420   
 

3 37 0.51 17 16 592   
 

4 54 0.68 23 10 540   
 

5 62 0.85 28 5 310   
 

6 59 1.00 33 0 0 0 0 
 

7 47     1 47 
 

8 34     2 68 
 

9 21     3 63 
 

10 12     4 48 
 

11 6     5 30 
 

12 3     6 18 
 

13 0     7 0 
 

Total 365    2086  274 
  

Cost in Million $ (using cb = 600, cs = 6000) 1.25 1.64 
Total costs for 33 berths in Million dollars  2.89 
Total costs for 31 berths in Million dollars  3.15 

Total costs for 32 berths in Million dollars  3.08 
Total costs for 34 berths in Million dollars  2.93   

X
*
 = Number of available berths × maximum berth utilization / average service time = 33 × 1/5.58 = 6.00 

 

 

be increased as long as the marginal cost of berths (con-
struction and maintenance) is less than the delay costs of 
waiting ships.  

The “Queuing theory” has been employed to derive the 

number of waiting ships and the average ship delays. The 

usage of queuing theory is subjected to the following two 

assumptions: 
 

i) Ships arrivals at a sea port can be described as a 
negative exponential distribution, and, 
ii) Berth service time yields to a multi-exponential 

function. 

 

The employment of the queuing theory to study the 
movements of general cargo ships at Alexandria port was 
profitable. The observed pattern of ships arrivals appears 
to agree with Poisson’s law of random distribution. In 
addition, the berth service time for 315 ships was found to 
conform most closely to an Erlang distribution with K = 

3. The usage of an approximate model of queuing theory 
led to acceptable results. The criterion for acceptance of 
this model was the reasonable agreement achieved 
between the computed and observed values of average 
waiting time and average number of waiting ships in 
queues at berths. 

 
 

 

Thus, there is no doubt that ships arrive at Alexandria 
port in accordance with a random pattern and that the 
degree of accuracy compares favorably with the accuracy 
that may be realized in estimating future traffic.  

The application to Alexandria port verifies the antici-
pated benefit of using the suggested methodology to 
evaluate the port size in the best interests of both ship 
operators and the port authority. The evaluation is settled 
on the premise that maximum port efficiency results when 
the total port cost is minimum, that is, the cost of vacant 
berths over a substantial period plus the time cost of 
ships waiting for a berth during the same period. 
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