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Arbuscular mycorrhizal fungi (AMF) associations are integral, functioning parts of plant roots and are widely 
recognized as enhancing plant growth on severely disturbed sites, including those contaminated with heavy 
metals (HMs). They are reported to be present on the roots of plants growing on HM-contaminated soils and play 
an important role in metal tolerance and accumulation. Isolation of the indigenous and presumably stress-
adapted AMF can be a potential biotechnological tool for inoculation of plants for successful restoration of 
degraded ecosystems. Plants grown in metal contaminated sites harbour unique metal tolerant and resistant 
microbial communities in their rhizosphere. These rhizo-microflora secrete plant growth-promoting substances, 
siderophores, phytochelators to alleviate metal toxicity, enhance the bioavailability of metals (phytoremediation) 
and complexation of metals (phytostabilisation). Most studies of HM toxicity to soil microorganisms have 
concentrated on effect where loss of microbial function can be observed and the effects on biodiversity within 
microbial populations and communities have not significantly been evaluated. This review highlights the 
interaction between HM-contaminated soils and AMF. 
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INTRODUCTION 

 
Heavy metals (HMs) occur naturally in the environment 
and constitute a potential hazard for waters, soils, plants 
and sediments. Numerous studies have indicated that 
agroecosystems receive inputs of HMs from the 
increased use of agrochemicals, the application of metal-
containing wastes such as sewage sludge, pig manure, 
coal and wood ashes to soils, and from atmospheric 
deposition (Mhatre and Pankhurst, 1997). Although some 
of these metals are essential plant micronutrients and are 
required or are beneficial for plant growth and develop-
ment (Zn, Cu, Fe, Mn, Ni, Mo, Co), high contents and/or 
long-term presence of HMs, in soils, are generally 
considered a matter of concern to society as they may 
adversely affect the quality of soil and water, and com-
promise sustainable food production (Pandolfini et al., 
1997; Keller et al., 2002; Voegelin et al., 2003; Kabata-
Pendias and Mukherjee, 2007). Therefore in recent  
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years, increasing attention has been paid to the 
remediation of polluted soils, among which the use of 
plants and microbes to remove hazardous metals ions is 
particularly emphasized. Phytoremediation is the use of 
plants to remove pollutants from environment, while 
microremediation refers to the use of microbes. These 
two approaches are preferred to chemical/physical 
remediation, because of their cost-effectiveness, 
environmental friendliness and fewer side effects.  

Phytoremediation cannot be done alone by the plant, 
just as there is always a close interaction between the 
microorganisms in the rhizosphere and the plant which 
leads to an increased activity related to soil remediation 
(Compant et al., 2010). Overall a searching for and 
application of hyperaccumulating plants in combination 
with a beneficial rhizo- and/or endo-spheric microbial 
community holds great promise for low cost cleaning of 
contaminated sites.  

Arbuscular mycorrhizal fungi (AMF) are one of the 

important endophytic fungi living in the roots of most 

terrestrial plants. This symbiosis confers benefits directly 



 
 
 

 

to the host plant
'
s growth and development through the 

acquisition of phosphorous and other mineral nutrients 
from the soil by the fungus. In addition, they may also 

enhance the plant
'
s resistance to biotic and abiotic 

stresses (Harrier and Sawczak, 2000). Potential roles of 
AMF associations have repeatedly been demonstrated to 
alleviate metal stress of plants (Hildebrandt et al., 2006). 
Poor or absent mycorrhizal inoculum were found in some 
of mine soils, which could explain the lack of mycorrhizal 
colonization. However, mycorrhizal rather than non-host 
plants could colonize polluted mining sites, suggesting 
that HM tolerance or other beneficial effects were 
conferred by mycorrhizal symbiosis. Besides AMF, there 
are other beneficial microorganisms that may contribute 

to the plants
,
 tolerance to HM-contamination. Plant 

growth-promoting rhizobacteria (PGPR) improves plant 
growth through several mechanisms, such as increased 
nutrient uptake, suppressing pathogens by producing 
antibiotics and siderophores or bacterial and fungal 
antagonistic substances, phytohormone production and 
nitrogen fixation. Although PGPR was first used for 
promoting the plant growth, much attention has recently 
been paid on the application of PGPR to remediate 
contaminated soils in association with plants (Huang et 
al., 2004b, 2005; Narasimhan et al., 2003). Nowadays, it 
has been shown that improvement of the interactions 
between beneficial rhizosphere microorganisms and 
plants can significantly lower the stress placed on plants 
by the presence of HMs, increase the availability of metal 
for plant uptake and subsequently are considered to be 
an important tool for phytoremediation technology (Glick, 
2003, 2010). For example, AMF could enhance uptake of 
nutrient elements as well as water by host plants through 
their extraradical mycelial networks and protecting the 
host plants against HM toxicity (Leyval et al., 1997).  

This AMF-induced plant nutrient uptake is of more 
importance in alkaline and/or calcareous soils of arid-
semiarid regions in which the bioavailability of P and most 
of the cationic micronutrients is limited. Calcareous soils 
have also lower water holding capacity due to the 
presence of carbonates (Khodaverdiloo et al., 2011). 
Furthermore, Khodaverdiloo and Homaee (2008) and 
Davari et al. (2010) reported a significant reduction in 
plant transpiration with an increase in soil HM concen-
tration. It has been suggested that heavy metals, such as 
Cd, can affect root hydraulic conductivity by multiple 
mechanisms operating on the apoplastic and/or the 
symplastic pathway (Shah et al., 2010). Recently, the 
ability of microorganisms to improve the growth of plants 
including canola and tomato seedlings treated with toxic 
concentrations of As, Cd, Ni, Pb, Se and Zn has been 
demonstrated (Burd et al., 1998; 2000; Belimov et al., 
2005; Stearn et al., 2005). 
 
 
The aims of this paper were to review 

 

(i) The effect of HMs-contamination on microbial 

 
 
 
 

 

population and their activity with an emphasis on AMF, 
(ii) Tolerance and adaptation of AMF to HMs, 
(iii) The potential benefits of AMF in phytoremediation of 

HM-contaminated soils. 

 

EFFECT OF HEAVY METAL CONTAMINATION ON 

SOIL MICROBIAL POPULATION AND THEIR 

ACTIVITY 
 
Microorganisms in the soil are responsible for nitrogen 
fixation, assimilation, and degradation of organic residues 
to release nutrients (Baath, 1989; Brookes, 1995). When 
HMs are retained in the soil by repeated and uncontrolled 
additions, they interfere with these key biochemical 
processes which alter ecological balance. Toxic effects of 
HMs on microorganisms manifests in numerous ways 
such as decrease in litter decomposition and nitrogen 
fixation, less efficient nutrient cycling (Baath, 1989), 
impaired enzyme synthesis and activity in soil, sediments 
and water. Due to their relation to soil functionality, the 
soil microbial population and activity have been proposed 
as useful indicators of soil improvement and soil degra-
dation. In addition, soil enzyme activities are considered 
as sensitive and early indicators of both natural and 
anthropogenic disturbances (Giller et al., 1998). Besides 
the soil microbial function, molecular fingerprinting 
methods may provide a qualitative and quantitative mea-
sure of microbial diversity and community com- position 
in undisturbed and contaminated soils (White et al., 1998) 
as they reflect the status of the microbial gene pool in the 
investigated systems (Head et al., 1998; Van Elsas et al., 
1998). Therefore, the combination of more traditional soil 
biochemical methods with more recent molecular 
techniques can provide valuable information about the 
microbiological status of the soil.  

The soil microbial community is thought to be a 
sensitive bioindicator of metal pollution effects on bio-
availability and biogeochemical processes (Hinojosa et 
al., 2005). It has been shown that HMs at certain 
concentrations can have long-term toxic effects within 
ecosystems and have a clear negative influence on 
biologically mediated soil processes (Lee et al., 2002). It 
is generally accepted that accumulation of HMs in soil 
reduce the amount of soil microbial biomass (Brookes 
and McGrath, 1984; Chander et al., 1995) and various 
enzyme activities, leading to a decrease in the functional 
diversity in the soil ecosystem and changes in the 
microbial community structure (Frostegard et al., 1993). 
However, metal exposure may also lead to the develop-
ment of metal tolerant microbial populations (Ellis et al., 
2003). These metal-tolerant microbial populations could 
potentially be used as plant helping agents in 
phytoremdiation of HM-contaminated environments. 

Zarei et al. (2010) studied the abundance and diversity 
of AMF associated with dominant plant species along a 

transect from highly lead (Pb) and zinc (Zn) polluted to 

non-polluted soil at the Anguran open pit mine in Iran. 



 
 
 

 

Using an established primer set for AMF in the internal 
transcribed spacer (ITS) region of rDNA, nine different 
AMF sequence types were distinguished after phylogene-
tic analyses, showing remarkable differences in their 
distribution patterns along the transect. With decreasing 
Pb and Zn concentration, the number of AMF sequence 
types increased, however one sequence type was only 
found in the highly contaminated area.  

Morphological spore identification to the genus level 
also suggested that there was a reduced AMF species 
diversity in highly HMs-contaminated plots. To test this 
hypothesis, the AMF diversity in the roots of the 
indigenous plant species Veronica rechingeri was 

assessed by Zarei et al. (2008) in four selected plots 
along the same transect using molecular DNA based 
markers for AMF sequence type identification. The results 
of this study clearly showed a decline in the number of 
AMF sequence types colonizing the roots of V. rechingeri, 

ranging from six types in uncontaminated plots to only 
two types in highly HM-contaminated plots. The AMF 
distribution data also revealed AMF sequence types that 
are adapted to high HM concentrations. 
 

 

AMF TOLERANCE AND ADAPTATION TO HEAVY 

METALS 
 
The literature presents a range of “classic” ecological 
principles explaining the processes that increase the 
tolerance or resistance of a community (Boivin et al., 
2002). Resistance refers to the ability of microorganisms 
to withstand the effects of a pollutant usually effective 
against them, while tolerance refers to the ability of 
microorganisms to adapt to the persistent presence of the 
pollutant. As stated by Leyval and Joner (2001), tole-
rance and resistance to the toxic effect of HMs depends 
upon the mechanism involved. Briefly, as mentioned in 
epidemiological studies (Foster and Hall, 1990; Tosun 
and Gönül, 2005), metal tolerance could be defined as a 
phenomenon by which microorganisms increase 
resistance towards stress resulting from exposure to HM 
toxicity.  

Metal tolerance of arbuscular mycorrhizal (AM) and 
ectomycorrhizal (ECM) fungi have been assessed using 
several observation methods including: AM spore 
numbers, root colonization and the abundance of ECM 
fruiting bodies (Weissenhorn et al., 1993, 1994; Del Val et 
al., 1999). Unfortunately, such methods did not give 
information concerning conditions, limitations and thres-
hold values ensuring the survival and growth of AMF, or 
about the genetic basis for multi-metal resistance and 
tolerance. Moreover, AMF coexist with other microbial 
communities and plant roots that can tolerate and 
accumulate metals, and this could confound the real 
interactions between AMF and metals in the medium.  

More recently, to evaluate the tolerance of 

microorganisms in soils polluted with metals, specialists 

  
  

 
 

 

have adopted the concept of pollution-induced community 
tolerance (PICT) (Nikli ska et al., 2006). This perspective 
stipulates that with time, in an ecosystem, contamination 
exposure increases tolerance in microbial communities. 
Davis et al. (2002) used the PICT method to assess the 
effects of long-term exposure to Zn on the metabolic 
diversity and tolerance to Zn of soil microbial community. 
They showed that long-term exposure to Zn imposes 
stress on soil microbes, resulting in an increased 
tolerance. They concluded that the long-term 
accumulation of Zn in soils provides the microbial com-
munity with time to adapt to this metal. Indeed, microbial 
communities are often found to recover after an initial 
inhibition by high metal inputs (Holtan-Hartwik et al., 
2002). This adaptation has been attributed to two factors 
(Almås et al., 2004). The first one is a gradual decrease 
in metal availability due to immobilization reactions 
occurring in the rhizosphere. The other factor is a gradual 
change in microbial community structure, based on 
changes in phospholipid fatty acid profiles (Frostegård et 
al., 1993) which results in more tolerant organisms.  

Although metals may induce changes in the microbial 
community, resulting in microorganisms more resistant to 
metals (Almås et al., 2004), most essential and non 
essential metals exhibit toxicity above a certain 
concentration. This toxicity stress, appreciated by a thres-
hold value (Leyval and Joner, 2001), will vary depending 
on many factors including the type of microorganism, the 
physico-chemical properties and concentration of the 
metal, and the edaphic and environmental conditions 
(Gadd, 1993).  

Even though metals can exhibit a range of toxicities 
toward soil microorganisms (McGrath, 1994; McGrath et 
al., 1995; Giller et al.; 1998; Dai et al., 2004; Nikli ska et 
al., 2006), AMF isolates, particularly the ecotypes living in 
metal-enriched soils, metalliferrous sites and mine spoils 
heavily polluted with metals, can, depending on intrinsic 
and extrinsic factors, tolerate and accumulate HMs 
(Gildon and Tinker, 1981; Weissenhorn et al., 1993, 
1994; Joner and Leyval, 1997; Leyval et al., 1997; Smith 
and Read, 1997). Field investigations have indicated that 
AMF can colonize plant in metal contaminated sites (Díaz 
and Honrubia, 1993; Pawlowska et al., 1996) and in 
agricultural soils contaminated with metals of different 
origins, including atmospheric deposition from smelter 
and sludge amendments. Mycorrhizal fungi have also 
been shown to be associated with metallophyte plants on 
highly polluted soils. Nevertheless, it should be kept in 
mind that in some extreme metal conditions, AMF 
inoculation can be entirely inhibited (Weissenhorn et al., 
1994). Del Val et al. (1999) reported that spore numbers 
decreased with the increasing amounts of HMs, whereas 
specie richness and diversity increased in soils receiving 
an intermediate rate of sludge contamination but 
decreased in soils receiving the highest rate of HM-
contaminated sludge.  

Several reports and reviews suggested that AMF from 



 
 
 

 

metal-contaminated sites have developed tolerance 
against metal toxicity and are well adapted (Weissenhorn 
et al., 1993, 1994; Leyval and Joner, 2001; Toler et al., 
2005; Sudova et al., 2007). The evolution of metal 
tolerance is showed to be rapid in MF. As stated by 
Sudova et al. (2007), tolerant strains of some MF may 
develop within one or two years (Weissenhorn et al., 
1994; Tullio et al., 2003). Gonzalez-Chavez et al. (2002a,  
b) reported that AMF have evolved arsenate resistance 
and conferred enhanced resistance on Holocus lanatus. 
Heavy metal concentration may decrease the numbers 
and vitality of AMF as a result of HM toxicity (Dixon, 
1988) or may have no effect on mycorrhizal colonization 
(Leyval et al., 1997). Biró et al. (2005) studied the stress 
buffer effect of the AMF and their colonization behaviour 
in metal spiked soil on a long-term level in controlled 
conditions. The soils used were collected after a 12 year 
metal-adaptation process, where 13 trace element salts, 
such as Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sr and Zn 
were applied in four gradients (0, 30, 90 and 270 mg/kg 
dry soil). Barley (Hordeum vulgare L.) was used as a test 
plant. They found a strong dose dependency at the 
arbuscular richness in general. The sporulation of the 
AMF was found as the most sensitive parameter to long-
term metal(loid) stress. They reported that Al, As, Ba, Cd, 
Cr, Cu, Pb, Se, Sr and Zn reduced significantly the spore-
numbers of the AMF, while the Ni loadings (at 36 g/soil) 
increased mycorrhizal sporulation.  

At present, potential interaction mechanisms between 
AMF and metals, and the cellular and molecular 
mechanisms of HM tolerance in AMF, are poorly 
understood (Leyval and Joner, 2001; Martin et al., 2007). 
Metal transporters and plant-encoded transporters are 
involved in the tolerance and uptake of HMs (Göhre and 
Paszkowski, 2006; Hildebrandt et al., 2007) from extra-
cellular media, or in their mobilization from intracellular 
stores (Gaither and Eide, 2001). Göhre and Paszkowski 
(2006) hypothesized that metals could be released at the 
pre-arbuscular interface and then taken up by plant-
encoded transporters. 

 

ROLE OF AMF IN PHYTOREMEDIATION OF HEAVY 

METAL CONTAMINATED SOILS 
 
In nature, some plants hyperaccumulate HMs. Although 
hyperaccumulator plants are widely used in phytoex-
traction, they are generally of low biomass, inconvenient 
for phytoremediation of HM-contaminated soils. In other 
words, phytoremediation usually is time consuming, 
mostly as a result of low bioavailability of HMs in the soil 
environment and/or low biomass of hyperaccumulators 
(Khodaverdiloo and Homaee, 2008) . Mobility and 
bioavailability of HMs and therefore their possible 
phytotoxicity is strongly affected by affinity of the soil for 
sorption of a given metal, which in turn depends on soil 
properties (Khodaverdiloo and Samadi, 2011). Low 
bioavailability of cationic HMs are of most 

 
 
 
 

 

importance in the young, low-developed calcareous soils 
of arid/semi-arid regions that have high affinity to irrever-
sibly sorb HMs, most likely, through metal-carbonate 
precipitation (Khodaverdiloo and Samadi, 2011). 
Numerous studies have indicated that AMF can decrease 
the metal uptake of the host plants, thus protecting them 
against HMs toxicity (Leyval et al., 1997; Zaidi and 
Musarrat, 2004).  

The number of spores and subsequently root coloniza-
tion of host plants are often reduced by soil disturbance 
(Waaland and Allen, 1987). However, AMF species 
adapted to local soil conditions could be able to stimulate 
plant growth better than non-indigenous species. Indi-
genous AMF ecotypes result from long-term adaptation to 
soils with extreme properties (Sylvia and Williams, 1992; 
Bae et al., 2003; Rahmanian et al., 2011). Therefore, 
inoculation of plants with indigenous and presumably 
stress-adopted AMF can be a potential biotechnological 
tool for successful restoration of degraded ecosystems 
(Dodd and Thompson, 1994; Mathur et al., 2007; 
Rahmanian et al., 2011).  

Lasat (2002) observed that the effect of AMF asso-
ciations on metal root uptake appears to be metal and 
plant specific. Greater root length densities and 
presumably more hyphae enable plants to explore a 
larger soil volume thus increasing access to cations 
(metals) not available to non-mycorrhizal plants 
(Mohammad et al., 1995).  

Rahmanian et al. (2011) showed that the introduction of 
HM-resistant microbes caused a significant decline in 
plant biomass. They attributed his reduction to the 
increased access of plants to the relatively immobile Cd 
existed in the soil and also to more metal contaminants 
absorption caused by the microbes. 

Gharemaleki et al. (2010a, b) reported that co-
inoculation of plant growth- promoting rhizobacteria 
(PGPR) and AMF resulted in increasing Cd and Zn 
uptake and their accumulation by corn (Zea mays) with 

comparison to sterile condition. However, in the given 
level of soil contamination, the plant accumulated higher 
Cd and Zn in PGPR inoculated soil rather than AMF 
inoculated soil. They concluded that in plant-
microorganism system for co-remediation of Cd and Zn, 
PGPR was effective than AMF. 
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