

African Journal of Food Science Research ISSN: 2375-0723 Vol. 5 (8), pp. 236-249, September, 2017. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Comparative and quality analyses of different tomato brands sold in major markets in Ibadan, Nigeria

¹A. A Onyeaghala*, ²I. F Ijagbone and ²Chima O. Kalu

¹Unit of Chemical Pathology, Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria, ²Nigeria Institute of Science Laboratory Technology, Samonda, Ibadan.

Accepted 28 June, 2016

Tomato paste is a good source of lycopene and vitamin C. These are antioxidants which limit the adverse effects of free radicals. It had been reported that tomato products imported into Nigeria were adulterated and substandard, but these claims have not been supported using evidence based study. Twenty eight different tomato products were identified. Of these numbers, sixteen were randomly selected. Five tins and sachets of each of these products were purchased respectively and used for analyses. All the products were registered with NAFDAC. Among the products investigated, there were significant differences in moisture, Lycopene, total sugar, starch, vitamin C and acidity (P<0.05). 14 (87.5%) of the tomato products contained sugar against 2 (12.5%) which were sugar –free. 13 (81.25%) contained starch against 3 (18.75%) which were starch- free; and this was not declared in over 75% of the products. Tomato products made in Nigeria were of comparable quality with those made in US and Italy (P>0.05), but those imported from China were significantly higher in total sugar and starch, but significantly lower in lycopene (P< 0.05). Variations in content between tin and sachet of the same brand and between different batches of the same product were observed. The need to patronize and support local made products while tightening regulatory processes of products imported into the country becomes imperative.

Keywords: Tomato, quality assurance, biochemical analysis, free radicals, oxidative stress, antioxidants.

INTRODUCTION

Tomato is an annual vegetable commonly consumed in Nigeria. It is widely distributed crop which can be consumed fresh, cooked or processed into a paste or syrup otherwise called a tomato puree. Tomato crop can grow in several climates and this confers on the crop, its ability to survive at various temperatures. More than 30% of global tomato is sourced from the Mediterranean [Ahmet and Vedat, 2009], but a greater percentage also comes from Turkey which is located in the East of the Mediterranean [Ahmet and Vedat, 2009]. According to Powell *et al* [2003], tomato is grown with a view to

consuming it fresh or processing it into other forms such as pastes or puree. A good number of tomato paste products currently sold in Nigeria are mostly supplied from China and other Asian Countries.

Studies have shown that lycopene from processed tomatoes are better absorbed than lycopene from fresh tomato [Anonymous, 1997]. This suggests that processed tomato products such as tomato paste, tomato sauce and ketchup are better sources of this antioxidant. It has also been reported that lycopene from tomato paste was 2.5 times more bioavailable in humans than lycopene from fresh tomatoes especially when boiled with oil, a common medium in which tomato is prepared in this region of the world.[Powell et al, 2003; Ahmet and Vedat, 2009]. Recent reports have shown that lycopene

^{*}Corresponding author E-mail: aaonyeaghala@gmail.com

helps prevent the development of cancer, especially prostate cancer [Anonymous, 1997]. This implies that commercially sold processed tomato paste should contain a good amount of this phytochemical which when consumed, should be able to benefit humans. Several parameters have been used to assess the quality of tomato paste. These include: the consistency, total solids content, titratable acidity, pH and levels of sugar [Ahmet and Vedat, 2009; LuZhang et al, [2014].

Well- structured studies which examine the quality of different tomato brands sold in Nigeria are limited. However, available but invalidated reports have repeatedly shown that many tomato brands imported into the country were adulterated with starch and colorants. [Shuehu, 2014, Umeofia, 2016]

Umeofia [2016], a leading chief executive in one of the tomato manufacturing companies in Nigeria, had lamented that the country loses huge sums of money to importation of fake tomato products. He reported that a good number of tomato products imported into the country from Asia were often adulterated with starch which could have adverse effects on the health of Nigerians.

Shehu [2014] reported that Nigeria had turned into a dumping ground for fake and low quality tomato products imported from Asia. The report further said that the spate of importation of adulterated tomato sauce in the name of tomato paste was of grave concern to stakeholders in the tomato industry. The infiltration of poor quality tomato products into the country has been attributed to the activities of unpatriotic marketers conniving with unethical foreign companies to haul in tomato paste loaded with starch and treated with food colour additives to achieve the deep red colour and the premium placed on National Agency for Food and Drug Administration and Control (NAFDAC) on the scrutiny of drugs imported into the country to the detriment of food and cosmetics [Shehu, 2014].

The importation of fake tomato products is not only a problem in Nigeria. Nkruma, [2015] has reported that most tomato brands sold in Ghana contained starch and sugar which have raised safety concerns among consumers of such products. The reports showed that the products had labels which indicated that they contained modified starch, tomato paste, sugar and some acidic component, but there were no indications of the relative quantities of those ingredients, a situation which has raised concerns over the quality of the products and the possible health implications related to their consumption [Nkruma, 2015].

The consequences of consuming fake and substandard products are better imagined than experienced. The effects and several deaths resulting from My Pikin tee thing powder episode in Nigeria can never be forgotten. The high prevalence of several diseases like cancer, hypertension, diabetes, cardiovascular disorders, kidney and liver disorders are evident within the country. Several

manufactures have been forced to close their businesses due to preference of Nigerians to imported goods. Even when such products are unhealthy and substandard compared to local made products, many Nigerians still prefer imported goods to local made products. Considering the lack of documented information on quality assessment of imported and different tomato products manufactured within the country, this study was conducted to bridge this gap. The objectives of the study were to determine the biochemical parameters contained in selected local and imported tomato brands, ascertain if imported tomato brand was better than those manufactured and packaged locally. determine if there were differences in content between tin and sachet of the same tomato brand and ascertain if there were variations in content between different batches of the same tomato brand. The information generated would help consumers of tomato products to make an informed decision when choosing available products.

Justification for the Study

Nigeria is the biggest economy in Africa. Premised on her economic size and huge population, manufacturers all over the world have hinged on these to bring in several products into the country with a view to increasing sales and making more profit. The desire for imported goods has driven many Nigerians to relegate to the background several products manufactured locally; even when it has been hypothesized that local made goods were better than imported products. On this account, several manufactures across the globe, have brought in fake and substandard products into the country believing that since most Nigerians prefer cheap products to costlier ones, reducing the quality of such products could attract more purchase and patronage. This has predisposed the nation to become a dumping ground for several substandard, fake and unhealthy products. With poor regulatory systems, poor adherence to quality managements system fundamentals, porous borders, increase in the importation of sub-standard products into the country and corrupt practices across various agencies of government, there is no doubt that it is the responsibility of researchers to assess the quality of several products sold to her citizens with a view to generating evidence based data and information which could be helpful in strengthening regulatory agencies, formulate better polices that will benefit the nation, improve public health and quality of life of citizens.

MATERIALS AND METHODS

Study Area and Site

Different brands of tomato paste sold in two major markets in Ibadan, Agbeni and Bodija were identified. In all, 28 different tomato brands were identified. Of these brands, 16 of them were selected at random. Five tins each among the 16 selected brands were purchased from randomly selected retailers. Tomato brands, having

corresponding sachet were also selected and purchased. This gave a total of 80 tins and 50 sachets of different tomato brands including Hunt, a tomato paste manufactured and approved by the United States Food and Drug Administration (USFDA). Both the tins and sachets of selected tomato brands were all registered with the National Agency for Food and Drug Administration and Control (NAFDAC). Products endorsed by the Nigeria Industrial Standards (NIS) were also noted and documented. The manufactured, expiry

dates and batch numbers of all products were noted and

Justification for Market Selection

recorded.

Markets located in Agbeni and Bodija are the melting points of major commercial activities not only for people living in Ibadan, but also many other states in the South West geo political zone. These markets are major commercial nerves for consumers and major distributors in Oyo state and other nearby south western states. Majority of household products are deposited at these markets by different producers from where many retailers and users come to repurchase both for resale and for household consumption.

Sample Size Calculation:

Studies examining the quality of different brands of tomato paste sold in Nigeria are limited. One of the outcomes for determining the quality of tomato is the quantity of lycopene contained in the paste. Study by Maria Lorena *et al* [2014] in Mexico on Quality parameters and bioactive compounds of red tomatoes at different post-harvest conditions, reported a standard deviation of 1.5 lycopene in tomatoes. Using this information, the number of tomato samples used for the study was calculated using the following formular:

$$N = \underbrace{\frac{2(Z_{\alpha} + Z_{\beta})^2 \delta^2}{(\mu_1 - \mu_2)^2}}_{\text{Where:}}$$

Z $_{\alpha}$ = standard normal deviate corresponding to 2 sided level of significance of 5%=1.96

 Z_{β} = standard normal deviate corresponding to 80% power = 0.84

N = number of samples

 δ = Standard deviation

 $(\mu_1 - \mu_2)$ = assumed difference in means between the two groups considered significant. It is assumed to be 50% of the standard deviation.

Therefore, the minimum number of tomato samples used was calculated thus:

$$N = \frac{2 \times (1.96 + 0.84)^2 \times (1.5)^2}{(0.75)^2}$$

$$N = 2 \times 7.84 \times 2.25$$

N = 62.72

Therefore the minimum number of tomato samples was 63. This was increased to 130 tomato samples for easy generalizability of information.

238

Selection Criteria

The inclusion and exclusion criteria for all tomato brands used for the study were:

Inclusion Criteria

Presence of NAFDAC Registration
Inscription of Batch Number
Presence of Manufactured and Expiry Dates
Indication of country of production or packaging
Must either be in tin and or sachet

Exclusion Criteria:

No NAFDAC Number No Manufactured and Expiry Dates No inscription of country of origin No batch number

Laboratory Analysis

All biochemical parameters associated with this study were analyzed at the Nigeria Institute of Science Laboratory Technology (NISLT) Samonda, Ibadan. The following analyses were performed in all the samples: Moisture content, Total solids, Lycopene, Total Sugar, Starch content, Vitamin C and Total acidity. All parameters were measured using the approved and validated method of Association of Official Analytical Chemists [AOAC]

Laboratory Methods

Analysis of Starch and Sugar, [AOAC, 2000]

Protocol Summary

Starch was first hydrolysed to sugar. The sugar was determined using the Lane and Eynon method. Result was expressed in gms/100gms (w/w) of tomato paste. The level of starch was determined by multiplying the sugar value by a factor of 0.9. The value obtained was expressed in g/100g of tomato paste. The presence of starch was qualitatively confirmed using the iodine method.

Vitamin C (Rhamanet al [2006])

Protocol Summary

Ascorbic acid was oxidized to dehydroascorbic acid by bromine water in the presence of acetic acid. After

Table 1. Comparative Analysis of Various Biochemical Contents among Different Tin Tomato Products.

Paramet er		s (N=80) Fo															F- Value	P- value
	RG	BR	DOCK	HAN	GIN	ROS	TAI	STRit	DER	DE-G	L79	TT	PO M	CIA	LUN	HUN		
Moisture (g/100g)	70±.09	72±2.07	71±2.1 9	70±3.2 1	73±3.1 6	70±3.3 6	71±2.8 2	69±2.6 8	73±3.1 1	69±2.5 1	70±3. 03	71± 3.51	73± 3.4 0	71± 2.68	73±3, 78	76±3.0 3	2.03	0.027*
T Solid g/100g)	30.49±6 .6	28.85±6 .02	22.62± 3.35	25.25± 14.01	23.55± 7.70	28.74± 5.01	24.23± 9.51	26.00± 7.76	30.67± 10.44	28.49± 5.77	26.58 ± 5.21	39.0 3±10 .66	28. 05± 3.8 4	21.69 ±6.75	24.56 ±2.15	20.53± 2.31	1.49	0.13
Lycopen e (mg/100g)	9.88±1. 38	6.50±0. 73	7.83±2 .09	6.71± 2.70	8.79±1 .26	8.57±1 .53	9.25±1 .08	7.74±1 .00	8.49±1 .87	7.54±0 .80	7.07± 2.11	9.11 ±1.2 5	8.6 3±1 .25	8.56± 0.72	9.85± 0.98	9.49± 1.47	2.23	0.007*
T.Sugar (g/100g)	0	21.9± 2.55	27.32± 2.55	29.58± 1.48	11.88± 1.02	30.9± 1.29	21.32± 1.82	20.92± 0.96	0	31.1± 1.80	21.16 ± 1.27	31.2 3± 1.80	0.4 6±0 .35	21.88 ± 2.12	12.62 ± 1.31	12.00± 0.00	287.1	0.000*
Starch (g/100g)	0	19.76±0 .73	24.62± 2.32	26.04± 0.23	10.74± 0.91	27.88± 1.16	19.24± 1.62	18.88± 0.84	0	28.02± 1.61	19.08 ±1.13	28.1 3±2. 73	0.1 4± 0.3	19.72 ±1.92	11.58 ±1.18	0	354.2 7	0.000*
Vit C (mg/100g)	30.00±2 .60	23.44± 4.05	16.64± 3.4	20.74± 1.14	21.84± 1.85	25.26± 2.18	20.86± 3.47	17.88± 4.22	17.84± 2.85	27.30± 3.24	13.3± 2.77	27.2 3±3. 35	22. 82± 7.2 9	16.28 ±5.51	17.84 ±2.22	26.26± 2.26	8.44	0.000*
T.Acidity (g/L)	0.24±0. 16	0.18±0. 01	0.16±0 .03	0.17±0 .02	0.28±0 .02	0.18±0 .00	0.17±0 .03	0.19±0 ,030	0.26±0 .06	0.29±0 .09	0.31± 0.11	0.22 ±0.0 6	0.3 0±0 .03	0.25± 0.05	0.33± 0.01	0.22±0 .08	3.39	0.000*

^{*}P<0.05 (Significant) RG=Ric Giko, BR= Brisk, DOCK= Docker, HAN= Hanno, GIN= GINO, ROS= Rosa, TAl=Taima, St.Rit=St Rita, DER,=Derica, DEG=De Gold; L79= L79; TT=Tasty Tom; POM= Pomo; CIA, Ciao, LUN=Luna; HUN=Hunt.

coupling with 2, 4, Dinitrophenyl- hydrazine, DNPH, the solution was treated with $85\%~H_2SO_4$ to produce a red complex. The colour formed was measured spectrophotometrically at 521nm. The intensity of colour formed was directly proportional to the concentration of Vitamin C present in the sample. The result obtained was expressed in mg/100g of tomato paste.

Total Solids [AOAC, 2000]

Protocol Summary

The Total Solids content is a measure of the amount of paste remaining after all the water has been evaporated in an oven. The mass of the residue is expressed as a percentage(%) of the original mass of paste. The Gravimetry, weight difference recorded

after removal of moisture from the tomato paste by Oven- drying is a function of the total solids. Data obtained was expressed in g/100gms (w/w) of paste.

Moisture [AOAC, 1995]

Summary of Protocol

The moisture content was determined by measuring

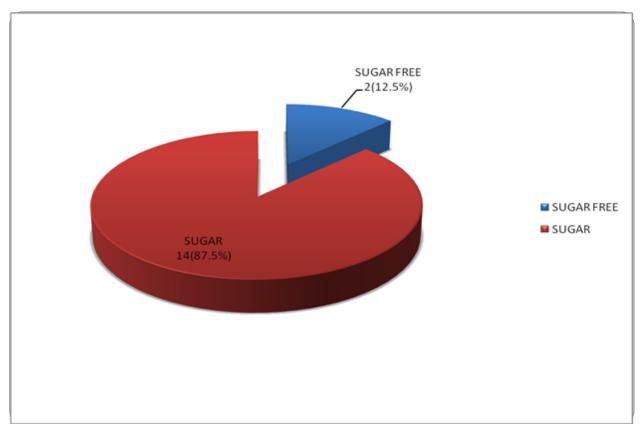


Fig 1. Chart showing percentage tomato products that contained and those that did not contain sugar

the mass of tomato paste before and after the water was removed by evaporation in an oven. The mass of the residue is expressed as a percentage(%) of the original mass of paste. Gravimetry, weight difference after removal of moisture by oven-drying was determined. Data was expressed in percentage (w/w)

Determination of Total Acidity [AOAC, 2000]

Protocol Summary

The volume of 0.1M solution of NaOH required to neutralize a standardized and measured amount of sample is the function of its acidic content. Since citric acid is the commonest acid present in fruits, volume of NaOH consumed is directly proportional to the citric acid present in the sample. The data obtained was expressed in g/L of citric acid

Spectrophotometric Determination of Lycopene [Anonymous, 2016]

Protocol Summary

Lycopene was extracted using hexane, ethanol and acetone mixture. The extract was measured

spectrophotometrically at 503 nm. The data obtained was expressed in mg/100 g

Data Analysis and Management

Data collected from biochemical analysis were analyzed using SPSS version 20 statistical software. Data obtained were expressed as mean and ± standard deviation (±SD) for quantitative variables. Paired t-test was used to test the significance difference between mean values of laboratory results. One way and two- way Analysis of Variance (ANOVA) were used for the comparison of means between groups. Appropriate graphical application was used to express data and non-parametric analysis was used to determine the degree of significance between mean groups.

Ethical Issues

Ethical approval for this study was obtained from the Oyo State Ministry of Health Ethical Committee (Approval Reference AD13/479/1016 of February, 2016). All samples were blinded during the sampling and analytical phases of the study , but were unblinded during the reporting stage. This was performed to eliminate bias. Confidentiality of data was maintained in all stages of the study.

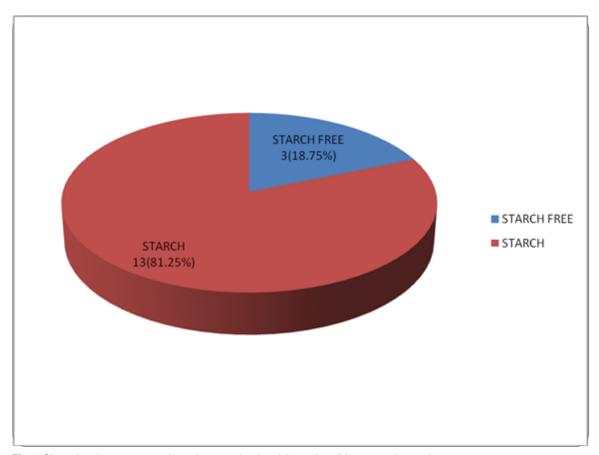


Fig 2. Chart showing tomato products that contained and those that did not contain starch

RESULTS

The mean concentration and comparative analysis of various biochemical contents among different tin tomato products is shown in Table 1. It was evident that there were significant differences in moisture, Lycopene, total sugar, starch, vitamin C and acidity among all products (P<0.05).

Figure 1 shows percentage tomato products that contained and those that did not contain sugar. Of all the tin tomato products analyzed, 14 (87.5%) contained sugar in varying degrees against 2(12.5%) which were sugar free. Of all the tin tomato products analyzed, 13 (81.25%) contained starch in varying concentration against 3 (18.75%) which were starch free (Figure 2). Among the tomato brands which contained starch, the starch contained in such products was not declared. (Figure 3).

Figures 4, 5, 6, 7 and 8 show the mean concentrations of lycopene, starch, sugar, total acidity and total solids contained in sachets of different tomato brands.

A comparative analysis in biochemical parameters between tomato products made in Nigeria and those imported from other countries such as China, Italy and USA using ANOVA showed thatthere were significant differences in moisture, (P= 0.008); lycopene (P=0.001); Total sugar (P= 0.000) and starch (P=0.000). Table 2.

Post Hoc Analysis of tomato products made in Nigeria and those from Other Countries—showed that tomato brands made in the country were of comparable biochemical quality in lycopene, total sugar and starch (if any) when compared with products from USA and Italy (P>0.05). Tomato products imported from China were consistently and significantly higher in total sugar, starch, but significantly lower in lycopene content (P< 0.05) respectively, Table 3.

Comparative analysis of tins and sachets of the same tomato brand raveled that significant differences (P<0.05) were observed among some tomato brands. In Gino tomato paste, significant differences were observed in moisture, total sugar and starch content of the tomato brand (P<0.05; Table 4) . In Hanno tomato paste, differences were observed in the starch and total acidity contents of the tomato product (P<0.05; Table 5). In Tasty Tom, significant differences were observed in total solid and total acidity contents of the tomato products (P<0.05; Table 6).

In Derica, there was significant difference in the lycopene content between tin and sachet of the same product (P<0.05; Table 7). There was no significant difference in

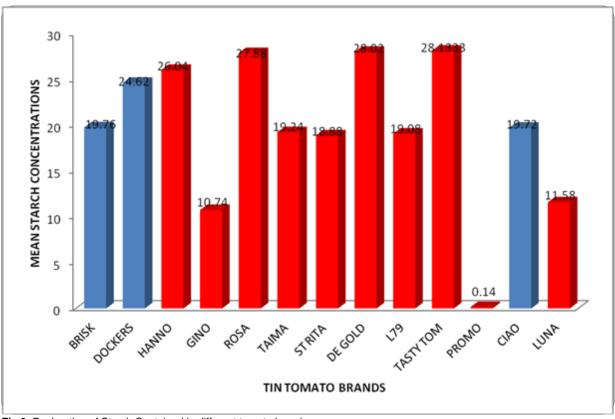


Fig 3. Declaration of Starch Contained in different tomato brands.

both the tin and sachet of Ric Giko and Promo tomato brands (P>0.05; Tables 8 and 9) respectively.

Comparative biochemical analysis between different batches of the same tomato brand showed that in Gino and Derica tomato brands, there were significant differences in total solid content of the tomato brands (P= 0.002, Tables 10 and 11) respectively. In Ric –Giko tomato brand, there was no observed significant batch variations in biochemical parameters (P>0.05), table 12. In Dangote tomato brand, significant differences were observed in total solid (P= 0.025), vitamin C (P= 0.011) and Total acidity (P= 0.001), Table 13.

DISCUSSION

Tomato pastes are often consumed everyday by many homes including those in South West Nigeria. They are good sources of lycopene and vitamin C, phytochemicals which have been implicated in the fight against cancer and other disorders initiated by oxidative stress. Premised on their high demand, it becomes imperative

that tomato products sold in various markets should be of the best international and acceptable standards.

Several biochemical parameters have been used to assess the quality of tomato. This includes the total acidity, sugar, moisture and total solids. However, it is expedient that all tomato pastes solely produced from pure tomato seed should contain a high percentage of lycopene and vitamin C. This study has shown that the various tomato brands investigated contained various levels of these biochemical substances. This could imply that each of the tomato brands was made from different species of tomato seed which depending on region and level of ripening, could contain varying levels of these biochemicals.

All the tin tomato brands investigatedcontained sugar except Rick Giko and Derica tomato products. It is important to note that the sugar and starch content of POMO tomato brand was negligible and this could be as a result of contamination during the production process. Since most of the tomato products contained starch, it is possible that the presence of sugar could either be as a result of hydrolysis of starch or deliberately added during the manufacturing process with a view to improving

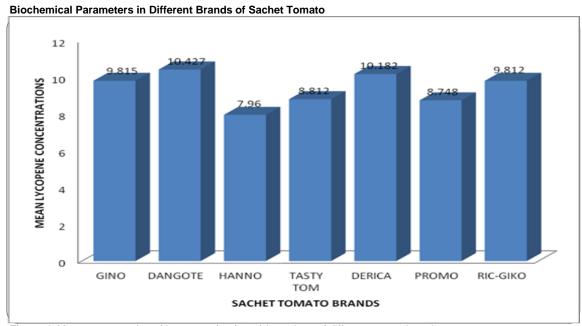


Figure 4. Mean concentration of Lycopene (mg/100g) in sachets of different tomato brands.

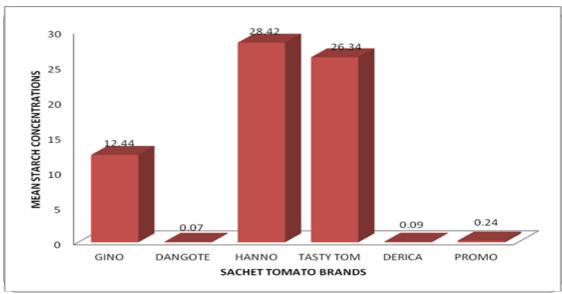


Figure 5. Mean concentration of Starch (g/100g)in sachets of different tomato brands.

quantity and taste. This is however subject to further investigation for proper elucidation. The sugar contained in Hunt and brisk tomato products were declared, while that contained in other products were not declared. Hunt is a tomato paste made and approved by the USFDA. It is a regulatory requirement in US that all products made and sold in the United State should declare all chemicals known or unknown before such products are either approved by FDA or sold in the USA. Furthermore, brisk

tomato paste could be made for export to US market which necessitated the declaration of the sugar contained in the paste.

The findings from this study showed that most of the products investigated contained starch except Ric Giko, Derica ,Dangoteand Hunt tomato products. It is worthy of note that majority of such tomato brands were those imported from China for Nigeria Market. Previous reports have shown that different tomato brands especially those

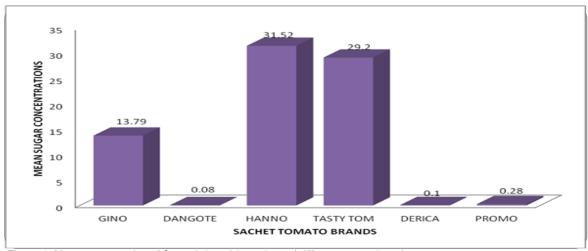


Figure 6. Mean concentration of Sugar (g/100g) in sachets of different tomato brands.

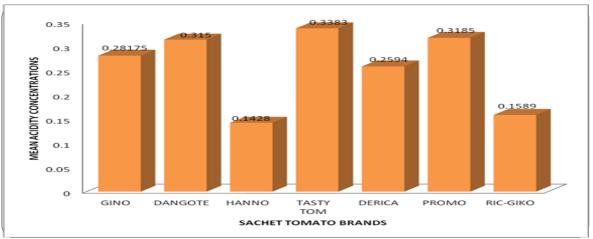


Figure 7. Mean concentration of total acidity (g/L) in sachets of different tomato brands.

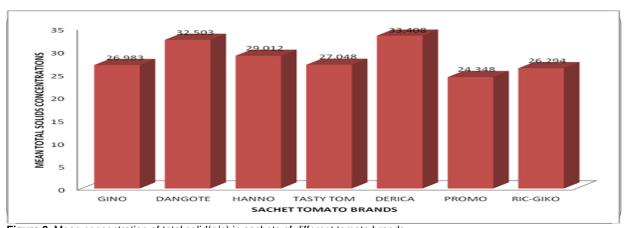


Figure 8. Mean concentration of total solid(g/g) in sachets of different tomato brands.

manufactured and imported from China contained starch [Nkruma, 2015; Umeofia, 2016; Shehu, 2016]. This

study supports their claims. Derica and Hunt tomato brands were products made in Italy and US respectively.

Table 2. Comparative analysis in biochemical parameters between tomato products made in Nigeria and products from other countries (China, Italy

and USA) Using ANOVA.

Parameters	Tomatoes (N=80) For all products					P-value
	NIG =15	CHINA =53	ITALY=5	USA=5		
Moisture	71.13± 3.45	70.66 ± 3.14	73.20±3.11	75.23± 3.05	4.260	0.008*
T Solid	26.43± 6.97	26.72± 7.67	30.76± 10.44	20.53± 7.61	1.571	0.204
Lycopene	9.66± 1.12	7.87± 1.62	8.49±1.87	9.49± 1.47	6.189	0.001*
T. Sugar	11.31± 9.13	22.22± 9.31	0.000	12.00± 0.00	14.838	0.000*
Starch	10.27± 8.25	19.97± 8.33	0.000	0.000	20.926	0.000*
Vit C	22.90± 5.95	20.92± 5.64	17.84± 2.85	26.26± 2.26	2.534	0.063
T.Acidity	0.25± 0.11	0.23± 0.07	0.26± 0.06	0.22± 0.10	0.418	0.741

^{*}P<0.05 (Significant)

Table 3. Post Hoc Analysis of tomato products made in Nigeria and those from Other Countries

Variable	Country of Origin	Country	Mean Diff	P-Value
Moisture	NIGERIA (Mean SD)	China (70.66 ± 3.14)	0.473	1.00
	,	Italy (73.20±3.11)	-2.067	1.00
	71.13± 3.45	USA (75.23± 3.05)	-4.467	0.053*
Lycopene	NIGERIA			
		China (7.87± 1.62)	1.791	0.001*
	9.66± 1.12	Italy (8.49±1.87)	1.170	0.887
		USA (9.49± 1.47)	0.172	1.000
Total Sugar	NIGERIA			
		China (22.22± 9.31)	-10.907	0.000*
	11.31± 9.13	Italy (0.000)	11.31	0.088
		USA (12.00± 0.00)	-0.6866	1.000
Starch	NIGERIA			
	10.27± 8.25	China (19.97± 8.33)	-9.704	0.000*
		Italy (0.000)	10.273	0.081
		USA (0.000)	10.273	0.081

^{*}P< 0.05 (Significant)

Products from these countries are highly regulated and often conform to required regulatory standards prior to marketing. This finding also implies that Rick Giko tomato brand is consistent in content and qualitywith hunt, Derica and Dangote tomato products.

Starch should not be a component of quality tomato paste. Nevertheless, when it forms part of the biochemical components, regulatory processes should mandate that such be declared to enable consumers make an informed decision. From this study, among all the products that contained starch, the starch contained in such products was not declared. This presents the products as though they only contained tomato paste, thus creating a wrong impression to the buyers of such products. In products were starch contained in tomato paste were declared, since the manufacturers of such products have already intimated buyers about the content of the product, it is the choice of the buyer to make informed decision before purchasing such products.

Approving products which were majorly starch with lower contents in Vitamin C and lycopene is highly inimical to

consumers' health. Several diseases have been linked to obesity and excessive generation of free radicals. It is possible that consumption of tomato paste loaded with starch and lower in lycopene and vitamin C contents could be contributing to this high incidence of obesity and associated medical problem prevalent in the country. This is subject to further investigation using a well-structured clinical study. All the products which contained starch had NAFDAC registration and endorsement, but without NIS endorsement. However, it is worrisome that the nation's regulatory agency should approve and register products which could be inimical to people's health without adequately evaluation such products for quality and safety using established and acceptable guidelines. From this study, the need for reviewing, strengthening and tightening regulatory processes for registration of tomato products imported into the country becomes very evident. In every manufacturing process especially for food industry, it is expected that manufacturers adhere strictly to the principles of good manufacturing practice while putting in place good quality assurance measures. From

Biochemical Analysis between Tin and Sachet of the Same Tomato Brand

Table 4. Comparative Analysis between Gino Tin vs GINO Sachet.

Table 4. Comparative	Table 4. Comparative Analysis between Gine Till vs Gine Gaenet.								
Variable	Tin (N=5)	Sachet (N=10)	T test	P value					
Moisture	73.0±3.16	76.5±2.17	-2.536	0.025*					
Total Solid	23.5±7.7	26.98±5.28	-1.0213	0.326					
Lycopene	8.79±1.26	9.47±2.23	-0.8196	0.427					
Total Sugar	11.88±1.02	13.79±1.20	-3. 0337	0.010*					
Starch	10.74±0.98	12.44±1.09	-2.9681	0.011*					
Vitamin C	21.84±1.85	26.18±5.12	-1.8076	0.094					
Total Acidity	0.28±0.02	0.28±0.03	0.1790	0.861					

^{*}P< 0.05 (Significant)

Table 5. Comparative Analysis between Hano Tin vsHano Sachet.

Variable	Tin (N=5)	Sachet (N=5)	T test	P value	
Moisture	70.4 ± 3.20	70.2± 3.11	1.000	0.3739	
Total Solid	25.25± 14.0	29.01±5.28	-0.9030	0.417	
Lycopene	6.71± 2.70	7.96± 2.26	-0.7950	0.471	
Total Sugar	29.58±1.48	31.52± 1.89	-2.4334	0.0717	
Starch	26.04± 0.23	28.42± 1.69	-2.8623	0.0458*	
Vitamin C	20.74± 1.14	20.67± 1.56	0.128	0.9039	
Total Acidity	0.17±0.21	0.14±0.11	7.3232	0.001*	

^{*}P< 0.05 (Significant)

Table 6. Comparative Analysis between Tasty Tom Tin vs Tasty Tom Sachet.

Variable	Tin (N=5)	Sachet (N=5)	T test	P value	
Moisture	70.67± 3.51	75.7±2.51	-2.343	0.058	
Total Solid	39.03± 10.66	27.04±2.23	2.555	0.043*	
Lycopene	9.11± 1.25	8.81±2.63	0.1819	0.862	
Total Sugar	31.23± 3.02	29.2± 1.16	1.398	0.211	
Starch	28.13± 2.73	26.34± 1.03	1.3735	0.219	
Vitamin C	27.23±3.35	16.44± 1.68	-0.5053	0.6314	
Total Acidity	0.22±0.06	0.33±0.05	-2.4732	0.048*	

^{*}P< 0.05 (Significant)

 Table 7. Comparative Analysis between Derica Tin vs Derica Sachet.

Variable	Tin (N=5)	Sachet (N=10)	T test	P value
Moisture	73.2± 3.11	76.0± 2.40	1.934	0.075
Total Solid	30.67± 10.44	33.4± 10.68	0.471	0.646
Lycopene	8.49± 1.87	10.18±0.60	2.663	0.020 *
Total Sugar	0.00±0.00	0.1±0.2	1.016	0.328
Starch	0.00±0.00	0.09±0.19	1.033	0.320
Vitamin C	17.84±2.85	18.25± 2.23	0.306	0.764
Total Acidity	0.26±0.06	0.26±0.07	-0.253	0.804
*D . O OF (C:==:f:===+)				

^{*}P< 0.05 (Significant)

the findings from this study, it was evident that there were variations in tin and sachet of the same tomato brand except those of Ric-Giko. Consistency in tin and sachet of the same tomato product implies that such products were processed under good manufacturing practice and are in consistent with good quality assurance measures. In products that showed variation in tin and sachet of the same tomato brand, this could be attributed to either differences in manufacturing process, limited to lack or

poor implementation of established quality assurance measures. It could also be attributed to different locations where the tin and sachet of the same tomato brand were packaged. It is possible that many sachet tomato brands sold in Nigeria are packaged locally while the tin of the same brand is packaged overseas before they are imported into the country for sales. This could account for the difference observed in tomato brands which exhibited such variations. Lack of variations

Table 8. Comparative Analysis between Promo Tin vs Promo Sachet.

· ····································	, many one werm committee in	ro : romo Guomon			
Variable	Tin (N=5)	Sachet (N=5)	T test	P value	
Moisture	73.2± 3.96	75.2±2.95	-1.291	0.266	
Total Solid	28.05± 3.84	24.34± 4.78	1.204	0.295	
Lycopene	8.63±1.25	8.74±1.63	-0.113	0.916	
Total Sugar	0.16±0.35	0.28±0.38	-0.429	0.690	
Starch	0.14±0.31	0.24±0.33	-0.412	0.702	
Vitamin C	22.82±7.29	14.78±2.27	2.244	0.08	
Total Acidity	0.30±0.03	0.31±0.27	-1.0330	0.360	

^{*}P< 0.05 (Significant)

Table 9. Comparative Analysis between Rick Giko Tin vsRic Giko Sachet.

Variable	Tin (N=5)	Sachet (N=5)	T test	P value	
Moisture	69.8± 4.08	71.0±0.70	0.753	0.493	
Total Solid	30.49±6.62	26.2± 4.92	-2.0687	0.107	
Lycopene	9.88± 1.38	9.81± 0.22	-0.129	0.903	
Total Sugar	0.00±0.00	0.00±0.00	-	-	
Starch	0.00±0.00	0.00±0.00	-	-	
Vitamin C	30.00±2.6	29.2±3.57	-0.748	0.496	
Total Acidity	0.24±0.16	0.20±0.11	-1.086	0.338	

P< 0.05 (Significant)

Biochemical parameters between different batches of the same tomato brand

Table 10: Comparative Analysis between Gino Tomato Products of Different Batches

Table 10. Comparative	a Arialysis between Girio Toli	iato Froducis di Dilleterit Batt	1162		
Variable	Batch 1 (N=5)	Batch 2 (N=5)	T test	P value	
Moisture	76.4±3.21	76.6±0.55	-0.126	0.906	
Total Solid	22.40±1.39	31.56±2.92	-7.214	0.002*	
Lycopene	8.27±2.99	11.36±0.33	-2.289	0.083	
Total Sugar	13.36±0.99	14.22±1.34	-0. 985	0.380	
Starch	12.06±0.93	12.82±1.22	-0.944	0.398	
Vitamin C	29.34±5.56	23.02±1.78	2.409	0.074	
Total Acidity	0.27±0.03	0.29±0.04	-2.217	0.091	

^{*}P< 0.05 (Significant)

 Table 11. Comparative Analysis between Derica Tomato Products of Different Batches.

Batch 1 (N=5)	Batch 2 (N=5)	T test	P value
75.2±3.11 ´	76.8±1.30 ′	-1.000	0.374
23.93±4.73	42.88±3.13	-7.681	0.002*
10.28±0.86	10.08±0.25	0.551	0.611
0.20 ±0.28	0.00±0.00	1.581	0.189
0.18±0.25	0.00 ±0.00	1.616	0.181
16.74 ±2.04	19.76±1.18	-2.689	0.055
0.22±0.09	0.30±0.03	-1.780	0.149
	75.2±3.11 23.93±4.73 10.28±0.86 0.20 ±0.28 0.18±0.25 16.74 ±2.04	75.2±3.11 76.8±1.30 23.93±4.73 42.88±3.13 10.28±0.86 10.08±0.25 0.20±0.28 0.00±0.00 0.18±0.25 0.00±0.00 16.74±2.04 19.76±1.18	75.2±3.11 76.8±1.30 -1.000 23.93±4.73 42.88±3.13 -7.681 10.28±0.86 10.08±0.25 0.551 0.20±0.28 0.00±0.00 1.581 0.18±0.25 0.00±0.00 1.616 16.74±2.04 19.76±1.18 -2.689

^{*}P< 0.05 (Significant)

observed among different batches of the same tomato product could also be attributed to good consistency in quality in various batches of the same tomato brand.

CONCLUSION

Based on the objectives of this study and following the biochemical information obtained, it was evident that the quality of tomato brand made in Nigeria compared well with tomato brands made in United States and

Italy.Imported tomato brands especially those from China were of poorer quality than those manufactured and packaged within the country. However, in most of the tomato products investigated, there were variations in content between tin and sachet of the same brand and variations between different batches of the same product. This study provides scientific evidence that local made tomato products are better in quality and consistency in biochemical parameters than products imported from China. It was also very evident that Ric-Giko tomato products showed good consistency between batches as

Table 12. Comparative Analysis between Ric -Giko Tomato Products of Different Batches.

Variable	Batch 1 (N=5)	Batch 2 (N=5)	T test	P value	
Moisture	71.0±0.71	69.8±4.09	0.735	0.493	
Total Solid	26.29±4.93	30.49±6.63	-2.069	0.107	
Lycopene	9.81±0.23	9.89±1.39	-0.129	0.903	
Total Sugar	0.00 ±0.00	0.000±	-	-	
Starch	0.00±0.00	0.00 ±0.00	-	-	
Vitamin C	29.2±3.57	30.0±2.60	-0.747	0.496	
Total Acidity	0.16±0.02	0.24±0.16	-1.086	0.339	

^{*}P< 0.05 (Significant)

 Table 13. Comparative Analysis between Dangote Tomato Products of Different Batches.

Variable	Batch 1 (N=5)	Batch 2 (N=5)	T test	P value
Moisture	74.6±5.86	77.0±0.71	-0.862	0.438
Total Solid	26.24±5.59	38.77±2.79	-3.485	0.025*
Lycopene	10.81±2.65	10.04±0.12	0.664	0.543
Total Sugar	0.00 ±0.00	0.16±0.36	-1.000	0.374
Starch	0.00±0.00	0.14 ±0.31	-1.000	0.374
Vitamin C	16.54±1.48	11.64±1.48	4.406	0.011*
Total Acidity	0.34±0.01	0.29±0.02	7.913	0.001*

^{*}P< 0.05 (Significant)

well as between tin and sachet of the same product. Unlike Ric Giko tomato products that had both NAFDAC and Nigerian Industrial Standards (NIS) endorsement, many of the products which were of poor quality had only NAFDAC registration, but lacked NIS endorsement. The need to patronize, encourage and support local manufactures while tightening regulatory processes in the registration of products imported into the country becomes very imperative and should not be compromised if the health, consumer right and wellbeing of the people are to be preserved.

ACKNOWLEDGEMENT

The authors express their gratitude to the Management of Erisco Nigeria Limited, Ikeja, Lagos for providing some financial assistance towards this study. The entire efforts and commitment of all Scientists at the NILST Laboratory, Samonda, Ibadan, Nigeria who painstakingly performed all the laboratory analyses is also highly appreciated.

Disclaimer

This study is free from all forms of conflict of interest. It was basically a scientific research activity performed with a view to assessing the quality of different tomato products sold and consumed by many Nigerians. The mentioning of products' name in this article was solely for providing scientific information. It is not intended to disapprove any product, but to provide information which could strengthen regulatory processes and enable

consumers have adequate information to make informed decision.

Contribution of Authors:

AAO

Designed the study, documented the proposal, managed literature search, drafted the manuscript and managed reviewers comment.

IFI

Contributed to the drafting of the proposal, provided the facility for laboratory analysis.

СОК

Provided additional information during the drafting of proposal, Managed and supervised laboratory analysis, provided laboratory technical support, ensured quality assurance of data and contributed to the drafting of the final manuscript.

All authors read and approved the manuscript.

REFERENCES

AhmetTurhan and Vedat Eniz. (2009). Estimation of certain chemical constituents of fruits selected tomato genotypes grown in Turkey. Afric. J. Agric. Res. 2009; 4 (10): 1086-1092.

Anonymous (2016). Spectrophotometric determination of

- lycopene from tomatoes by extraction with hexane/ethanol/acetone and absorbance measurement at 503nm.Available at www.fruitandvegetable.ucdavis.edu/files/123842. pdf. Accessed on 14th January, 2016.
- Anonymous: (1997). New Study Shows Processed Tomato Products Are a Better Source of Lycopene Than Fresh Tomatoes. December 01, 1997 available at http://www.cancernetwork.com/articles/new-study-shows-processed-tomato-products-are-better-source-lycopene-fresh-tomatoes. Accessed on 19th January, 2016.
- AOAC (1995).Official Methods of Analysis, Association of Official Analytical Chemists.16th Ed. Arlington, Virginia, USA.
- LuZhang, MichelleA.Schultz, Rick Cash, Diane M. Barrett, Michael J. McCarthy (2014.) Determination of quality Parameters of tomato paste using guided microwave spectroscopy. Food Control. 40: 214-223.
- María Lorena Luna-Guevara, Óscar Jiménez-González, Juan José Luna-Guevara, Paola Hernández-Carranza and Carlos Enrique Ochoa-Velasco (2014). Quality Parameters and Bioactive Compounds of Red Tomatoes (Solanumlycopersicum L.) cv Roma VF at Different Postharvest Conditions. J. Food Res. 3 (5): 8-18.
- NkrumaDaniel (2015) . Tomato Scare GSB Raises Eyebrows Over Sugar, Starch In Puree .Available at

- http://www.modernghana.com/news/245838/1/tomato-scare-gsb-raises-eyebrows-oversugar-starch.html.Accessed on 29th December, 2015.
- Official Methods of Analysis, Association of Official Analytical Chemists (AOAC). (2000) William Horwitz; 17th Ed. Gaithersburg, Md. USA.
- Powell LT, Kalamaki MS, Kurien FA, Gurrieri S, Bennett AB. (2003). Simultaneous transgenic suppression of LeP6 and LeExp influences fruit texture and juice viscosity a fresh market tomato variety. J. Agric. Food Chem. 51: 7450-7455.
- Rahaman M.M Khan, Rahaman M.M, Islam M.S and S.A Begun. (2006). A Simple UV Spectrophotometric Method for the Determination of Vitamin C Content in Various Fruits and Vegetables at Sylhet Area in Bangladesh .J. Biol. Sci.6 (2): 388-392
- ShehuAbubaka (2016). Fake Asian tomato paste flood Nigerian markets (Source :. Available at http://www.dailytrust.com.ng/daily/agriculture/3704-fake-asian-tomato-paste-flood-nigerian-markets#sEg3DdoJCTgz0EYC.99, 2014.Accessed on 18th April 2016.
- Umeofia (2016).Nigeria loses N197bn to tomato import. Available at http://inthenews.com.ng/nigeria-loses-n197bn-to-tomato-import.2016. Accessed on 18th April, 2016.