

Advanced Journal of Microbiology Research ISSN 2241-9837 Vol. 13 (6), pp. 001-008, June, 2019. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Density functional theory (DFT) study of C_7 Si₅ Ge₃ cluster as a novel material for vitamin C nano carrier

M. Monajjemi¹*, T. Ardalan², H. Seyed Hosseini Ghaheh² and F. Mollaamin³

¹Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. ²Science and Research Branch, Islamic Azad University, Tehran, Iran. ³Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran.

Accepted 23 April, 2019

In the present study, structural properties of C_7 Si₅ Ge₃ cluster and interaction between this cluster and vitamin C have been studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. Nuclear magnetic resonance (NMR) properties are calculated by using density functional method (B3LYP) with 6-31G, 6-311G* and cc-pvdz as basis sets. Also natural bond orbital (NBO) analysis has been performed for C₇ Si₅ Ge₃ cluster and C₇ Si₅ Ge₃ inside vitamin C. Our results indicate that vitamin C can form stable bindings with C₇ Si₅ Ge₃ cluster through oxygen (O) active site. Thus, we arrive at the prediction that the C₇ Si₅ Ge₃ cluster can be implemented as a novel material for drug delivery applications.

Key words: C₇ Si₅ Ge₃, vitamin, nano, nuclear magnetic resonance, natural bond orbital, density functional theory.

INTRODUCTION

Group-VA cluster such as BN nanomaterials are expected in extensive application due to the good stability at high temperatures with high electronic insulation in air. Despite the carbon nanotubes, BN nanotubes are constant band gap materials and thus provide an attractive opportunity for practical applications (Monajjemi et al., 2010). The wide range of their electronic properties from metallic to wide-gap semiconductors, depending on their chemical composition, makes them suitable candidates for nanosize electronic devices (Monajjemi et al., 2008, 2009). Due to the similarity between B-N and C-C units, a lot of effort has been devoted to BN fullerene-like materials in recent years, which have excellent properties such as heat resistance, insulation, and structural stability (Chopra et al., 1995; Monajjemi et al., 2011). Several studies have been made on BN nanomaterials such as BN nanotubes, BN nanocapsules, and BN clusters since they have excellent properties such as heat resistance in air and insulation, and these nano-particles are expected to be useful as electronic

devices, high heat resistance semiconductors, and insulator lubricants (Corso et al., 2004; Golberg et al., 1998; Stephan et al., 1998; Monajjemi et al., 2008). Also extensive research has been focused on group-IVA elemental clusters C_n , Si_n , Ge_n , Sn_n and Pb_n in the past two decades for both fundamental and technological reasons while very limited experimental and theoretical investigations performed on binary A_mB_n or ternary AlB_mC_n clusters (A, B, C=C, Si, and Ge)(Mollaamin et al., 2008, 2011; Monajjemi et al., 2004, 2010; Maiti et al., 2000; Froudakis et al.,1994, 1995; Grev and Schaefer, 1985; Lammertsma and Guner, 1988; Drebov et al., 2010).

Over the past several years, Froudakis et al. (1994) have performed various *ab initio* investigations on Si_mC_n binary microclusters, including the second-order Moller-Plesset (MP2) and coupled cluster singles and doubles (CCSD) calculations on Si_4C , (Monajjemi et al., 2010) MP2 or higher-order perturbation (CASP2) on Si_2C_4 , Si_3 C_3 and Si_2C_4 (Froudakis et al., 1994; Mollaamin et al., 2008). MP2 and CCSD(T) on Si_3C_2 (Froudakis et al., 1995) and CCSD(T) and tight-binding moleculardynamics studies on SiGe, Si_2Ge_2 , and Si_2Ge_4

(Mollaamin et al., 2011).

^{*}Corresponding author. E-mail: m_monajjemi@yahoo.com.

Figure 1. C7 Si5 Ge3 cluster.

Figure 2. C₇ Si₅ Ge₃ cluster inside vitamin C.

Earlier theoretical and experimental investigations provided detailed structural and bonding characteristics for Si₂C and Si₂C₂ (Lammertsma and Guner, 1988; Drebov et al., 2010). Very recently, we presented a density functional theory (DFT) study on binary microclusters A_mB_n (A, B=Si, Ge; $s=m+n\leq10$) and found that these clusters follow similar structural patterns to corresponding elemental Sis and Ge_s, (Li et al., 2001) and have more isomers with lower symmetries. However,

as we know, there have been no theoretical or experimental results reported on $Ge_iSi_mC_n$ ternary clusters to date. In this work, interaction between C₇ Si₅ Ge₃ cluster and vitamin C has been studied by using DFT employing B3LYP exchange correlation.

Computational details

In the present work, we optimized the $C_7Si_5Ge_3$ (Figures 1 and 2) with 3 basis sets, 6–311G, 6–311G^{*} and cc-pvdz and $C_7Si_5Ge_3$ beside vitamin C with 2 basis sets, 6–311G, 6–311G^{*} with the Gaussian 03 by the B3LYP method. The nuclear magnetic resonance (NMR) isotropic shielding constants were calculated using the standard Gauge-Independent Atomic Orbital (GIAO) approach of GAUSSIAN 03 program package (Dichfield, 1974; Zurek and Autschbach, 2004; Osmialowski and Gawinecki, 2001).

(a) The isotropic value σ iso of the shielding tensor which can be defined as (Becke, 1988; Lee et al., 1988):

$$\sigma_{ISO} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$

(b) The anisotropy parameter ($\Delta \sigma$) defined as:

If
$$|\sigma_{11} - \sigma_{150}| \ge |\sigma_{33} - \sigma_{150}|$$
 $\sigma = \sigma^{11} - \frac{\sigma_{22} + \sigma_{33}}{2}$
If $|\sigma_{11} - \sigma_{150}| \le |\sigma_{33} - \sigma_{150}|$ $\sigma = \sigma^{33} - \frac{\sigma_{22} + \sigma_{11}}{2}$

(c) The asymmetry parameter (η) which is given by Lee et al. (1988):

If
$$|\sigma_{11} - \sigma_{150}| \ge |\sigma_{33} - \sigma_{150}| \eta = \frac{\sigma_{22} - \sigma_{33}}{\delta}$$

If $|\sigma_{11} - \sigma_{150}| \le |\sigma_{33} - \sigma_{150}| \eta = \frac{\sigma_{22} - \sigma_{11}}{\delta}$

The calculations of NMR parameters has been shown in Tables 1 and 2 and Plot of σ_{iso} , σ_{aniso} , Δ , δ and η versus atomic charge for $C_7Si_5Ge_3$ cluster and $C_7Si_5Ge_3$ beside vitamin C has been illustrated in Figures 3 and 4. Also NBO analysis has been performed. The results of NBO analysis at different level of theory are listed in Table 3.

RESULTS AND DISCUSSION

Nuclear magnetic resonance (NMR) calculation

We studied about $C_7Si_5Ge_3$ as a novel material for vitamin C carriers. Before and after connecting the vitamin C to $C_7Si_5Ge_3$ NMR calculations were performed

	Atom	σiso	σaniso	Determine (NMR)	Distance matrix	ΔΕ	δ	η	Δσ	Dipole orientation	Atomic charge
	C(1)	231.7038	201.7217	10361483.58			-123.1349	-0.907854719	201.7217		-1.009404
	Si(2)	437.3231	227.9308	67386975.21			-209.9714	0.447376643	-314.95715		0.867148
	Si(3)	206.9964	294.1195	-4705409.055			-281.7959	0.39164303	-422.6938		1.437836
	Si(4)	209.5199	416.837	-3993017.67			-267.014	-0.959263559	416.837		0.853224
G	C(5)	-307.4583	388.5116	-9605090.051			-330.1262	0.569143558	-495.1893		-0.822804
1	C(6)	20.9606	314.0346	-1853192.32			-226.5743	0.848014978	-339.8615		-0.978851
-9 9	C(7)	-48.551	22.8389	1261262.605			-148.1028	-0.996918357	222.8389		-0.746227
Ϋ́Ρ	C(8)	-61.3514	154.2011	260918.8175	8663913.687	7944.729474	-62.3169	-0.350354398	154.2011	2.7151	-1.389715
31	Ge(9)	1154.3514	985.7233	981294414.5			-706.1246	0.86128298	-1059.18695		0.879479
ш	C(10)	-42.0106	205.8843	1021123.58			-129.1728	-0.937421036	205.88425		-1.161014
	Si(11)	31.9291	512.9105	-27366352.95			-469.2204	0.45748288	-703.83055		0.797525
	Ge(12)	795.2434	1612.1652	-109097925.4			-940.3287	-0.857020104	1612.1652		0.655489
	Si(13)	-19.9726	675.703	24649663.86			-273.9452	-0.355624775	675.70305		0.637779
	Ge(14)	782.2023	2476.9529	-147995544			-1075.2836	-0.464310346	2476.95295		0.64898
	C(15)	-117.1535	188.6415	30499.48033			-112.2594	-0.879728557	188.6415		-0.669445
	C(1)	216.6532	210.0134	8375401.613			-126.48	-0.893036053	210.0134		-0.767979
	Si(2)	450.7466	232.4786	76296550.03			-200.4019	0.546749307	-300.6028		0.703776
	Si(3)	209.029	268.0837	-3369620.286			-272.1728	0.313301329	-408.25925		0.94453
	Si(4)	233.3558	383.62	-1882069.934		-7944.99425	-264.876	0.931067367	-397.314	2.55	0.714599
	C(5)	-302.2342	371.8407	-9923881.549			-328.1706	0.510761781	-492.2559		-0.580893
Ğ	C(6)	0.9889	306.0146	-1032552.249			-227.5285	0.784477549	-342.2928		-0.68013
311	C(7)	-50.2985	237.4117	1601473.617			-150.1999	-0.946241642	237.4117		-0.417008
-9/	C(8)	-62.3578	155.2868	331337.4876	8663913.687		-60.7854	-0.296883791	155.2868		-0.835994
۲.	Ge(9)	1201.1183	1030.1901	1102261049			-734.6616	0.869686397	-1101.9924		0.482704
33L	C(10)	-76.5098	229.6456	1527747.398			-144.4965	-0.940479527	229.6455		-0.773117
-	Si(11)	44.9809	467.8052	-26831738.95			-453.5322	0.375294411	-680.29825		0.484356
	Ge(12)	721.7461	1749.9754	-219294325.4			-988.0461	-0.055407941	-482.0691		0.363066
	Si(13)	-7.4712	695.7326	24974460.52			-281.7684	-0.353889932	695.7326		0.43086
	Ge(14)	726.7263	2592.5202	-140648663.3			-1134.928	-0.477130972	2592.52015		0.349979
	C(15)	-116.2643	192.7436	121518.8024			-109.7052	-0.828718238	192.74355		-0.418748
	C(1)	219.4345	191.1158	9217907.439			-114.0135	-0.882496371	191.11575		-0.421345
N	Si(2)	514.7591	206.8696	122762327.9			-180.4345	0.52867772	-270.65175		0.38789
م م	Si(3)	302.0314	258.8061	12459222.49			-255.8606	0.348682447	-383.79095		0.487941
ų č	Si(4)	321.0828	344.7802	15756607.51			-244.746	0.878302403	-367.119		0.419312
Ĭ,	C(5)	-263.8017	350.1326	-5195149.609	12095331.38	-7944.93099	-314.0873	0.486349496	-471.1309	2.4172	-0.356859
٦Ľ	C(6)	15.9949	298.4917	-1440559.702			-220.0036	0.809010853	-330.00545		-0.459216
Я	C(7)	-32.4757	22.7183	1105869.528			-146.2138	-0.984508986	222.7182		-0.186287
	C(8)	-42.889	144.3388	330152.1512			-58.5632	-0.356887943	144.33885		-0.390749

Table 1. Nuclear magnetic resonance parameters of Carbon, Silicon and Germanium atoms in C7 Si5 Ge3 at the level of B3LYP/6-311G, B3LYP/6-311G* and B3LYP/cc-pvdz.

Tab	le 1	I. (Con	ıtd.
-----	------	------	-----	------

 Ge(9)	1438.9032	863.1021	2448192943	-622.2915	0.849298761	-933.4372	0.374131
C(10)	-57.5232	216.8211	1397515.216	-132.4638	-0.908778096	216.8211	-0.399124
Si(11)	152.4864	416.918	-28077133.16	-399.2861	0.392225024	-598.9264	0.131189
Ge(12)	1008.0843	1558.5175	337456034.6	-862.9395	-0.795962289	1558.51755	0.261685
Si(13)	97.3005	590.2695	3905728.001	-242.0477	-0.374233674	590.2695	0.152828
Ge(14)	989.0263	2292.39	-20826458.59	-1016.4582	-0.496479737	2292.39815	0.207784
 C(15)	-95.7853	176.9289	288341.24	-106.8816	-0.896417157	176.92895	-0.209179

Table 2. Nuclear magnetic resonance parameters of Carbon, Silicon, Germanium and Oxygen atoms in C₇ Si₅ Ge₃ inside of vitamin C at the level of B3LYP/6-311G and B3LYP/6-311G*.

Method	Atom	σiso	σaniso	0 11	σ22	σ33	Determine (NMR)	Distance matrix	ΔΕ	δ	η	$\Delta \sigma$	Dipole orientation	Atomic charge
	C(1)	-645.7465	1260.869	-1863.958	-268.1145	194.8331	-7697806			-1218.212	0.380022	-1827.317		-1.013667
	Si(2)	328.063	1466.009	-927.0378	605.8245	1305.402	23561661			-1255.101	0.557388	-1882.651		0.883092
	Si(3)	372.5191	467.6201	-90.4508	523.7423	684.2659	-1675060			-462.9699	0.346726	-694.4549		0.518203
	Si(4)	134.1127	764.0834	-380.7592	139.5956	643.5016	-1.16E+08			-514.8719	0.978702	-772.3078		0.703889
	C(5)	-234.8056	190.4396	-363.0613	-233.5097	-107.8459	-9751558			-128.2557	0.979791	-192.3835		-0.290315
	C(6)	-9.7212	288.4426	-230.939	19.2016	182.5739	-4764277			-221.2178	0.738513	-331.8268		-0.372796
	C(7)	-418.5622	1675.224	-1240.455	-713.4853	698.2535	7.07E+08			-821.8925	-0.641166	1675.224		-1.572688
	C(8)	-1138.946	1998.366	-2239.047	-1371.089	193.298	-1.65E+08			-1100.101	-0.78898	1998.366		-0.435397
	Ge(9)	1025.327	844.623	143.0221	1344.55	1588.409	3.73E+08			-882.305	0.276389	-1323.458		1.381945
(J)	C(10)	-122.7659	1010.676	-1118.143	198.8273	551.0178	20595553			-995.377	0.353826	-1493.065		-0.896844
110	Si(11)	-680.6575	2385.135	-3092.525	141.1199	909.4324	-4.85E+08			-2411.867	0.318555	-3617.801		1.045512
·-9	Ge(12)	1228.927	2310.215	-25.7599	943.4703	2769.07	7.81E+08	-9.96E+12 -22620.3	-22620.3	-1254.687	-0.772488	2310.215	10 8001	0.287004
Υ.	Si(13)	-342.2017	1013.021	-1120.188	-239.5625	333.1453	1.64E+08		-777.9861	0.736141	-1166.979	10.0001	0.333809	
33L	Ge(14)	-523.0917	2921.81	-3255.248	261.1914	1424.782	-8.59E+08			-2732.156	0.425887	-4098.234		0.584703
	C(15)	2813.448	10341.75	-1185.049	-82.5536	9707.948	4.95E+09		-3998.498 -0.275727	10341.75		-0.417952		
	C(16)	38.403	325.5507	-220.5401	80.3124	255.4368	-2515844			-258.9431	0.676305	-388.4147		0.160967
	C(17)	-56.1238	259.5801	-228.383	-56.9179	116.9296	1493027			-172.2592	-0.99539	259.5801		0.244959
	C(18)	-5.8769	168.4873	-128.9208	4.8421	106.448	208869.2			-123.0439	0.82577	-184.5659		0.183606
	C(19)	32.8849	124.4213	-73.8826	56.7048	115.8324	-432292.9			-106.7675	0.553798	-160.1512		0.4963
	O(20)	-169.9147	509.8918	-539.3696	-140.3875	170.0132	11686559			-369.4549	0.840159	-554.1825		-0.42876
	C(21)	-34.564	270.5059	-280.1856	30.7203	145.7733	1503192			-245.6216	0.468416	-368.4324		0.182574
	C(22)	-451.7256	732.0889	-1257.82	-133.6903	36.3337	-13074981			-806.0945	0.210923	-1209.142		0.321104
	O(23)	-493.3326	1014.63	-1355.613	-307.4721	183.0872	32035755			-862.2802	0.568909	-1293.42		-0.629221
	O(24)	-238.3456	795.3663	-701.4513	-305.4841	291.8986	58114131			-463.1057	-0.855026	795.3663		-0.261257
	O(25)	-1057.534	2072.535	-2893.651	-603.1073	324.1558	5.98E+08			-1836.117	0.505013	-2754.175		-0.295617
	O(26)	-776.13	2670.099	-3014.352	-317.9741	1003.936	3.83E+08			-2238.222	0.590607	-3357.333		-0.38465
	O(27)	-1073.145	2401.492	-4232.156	484.871	527.8492	7.55E+08			-3159.01	0.013605	-4738.516		-0.328505

|--|

C(1) -118.8758 1064.804 -1017.154 69.5322 590.9938 -29851317 -9.96E+12 -22621.54 898.2785 0.580511 -1347.418 10.7691 -0.813643 S(2) 236.8509 1593.269 -623.0847 -64.8926 1299.03 3.46E-08 -760.4356 -0.603197 1593.269 -0.635982 -0.635982 S(4) 21.0507 876.237 -702.2376 160.1809 605.2087 -84509705 -723.2883 0.615284 -1084.932 -0.237894 C(6) -86.4944 374.4651 -266.6757 280.9070 1.27E+08 -240.1497 -9.967.4245 0.56015 -1451.137 -0.973733 C(7) -476.5998 113.2615 -1072.996 514.559 -1.49E+09 -138.1389 -0.1303.245 0.56015 -1451.137 -0.973733 C(8) -1084.789 2.279.09 383.1927 469.0364 1.79E+08 -386.1384 -0.1032.245 0.56015 -1451.137 -0.973733 C(10) +47.6177 782.5297 +471.42																_
Si(2) 238.8509 1593.269 -523.5847 -64.8926 1290.03 3.46E+08 -760.4326 -0.603197 1593.269 0.635962 Si(3) 300.6817 348.252 -63.4098 432.605 532.8497 -11632059 -364.0915 0.275328 -544.1372 0.728352 Si(4) 21.057 372.237 -702.237 106.1209 -84509705 -722.383 0.615284 -1084.392 0.649518 C(5) -220.4648 394.461 -326.6314 -95.777 208.907 -240.1497 -0.960465 374.466 -0.293831 C(7) -476.5998 1136.251 -1444.02 -266.6757 209.007 -149E+09 -1032.245 0.560055 137.113 0.997865 C(8) -108.717 798.2597 -487.147 -142.5523 483.4114 14020943 -438.3825 -0.760503 798.2597 -0.663846 S(11) -475.522 1416.989 -2127.521 469.0364 1.79E+08 -1803.476 0.047599 -2705.213 0.839597		C(1)	-118.8758	1064.804	-1017.154	69.5332	590.9938	-29851317	-9.96E+12	-22621.54	-898.2785	0.580511	-1347.418	10.7691	-0.813643	
Si(3) 300.6817 348.252 -63.4088 432.605 532.8497 -11632059 -364.0915 0.275328 -564.1372 0.728352 Si(4) 21.0507 876.237 -702.2376 160.1809 605.2087 -84509705 -723.2883 0.615284 -1084.932 0.649518 C(6) -84.844 374.4661 -286.6341 -95.9787 163.1596 -5619970 -240.1497 -0.960465 374.466 -0.298431 C(7) -476.5998 1136.251 -1444.024 -266.6757 280.9007 1.27E+08 -967.4245 0.560615 -1451.137 -0.973733 C(8) 1309.92 1192.982 -2342.165 -1072.996 -514.599 -1.49E+09 -138.1389 -0.713955 613.7113 0.997865 C(10) -48.7617 798.2597 -466.334 1.79E+048 -188.1389 -0.713955 613.7113 0.997855 Si(13) -446.3191 158.2931 -217.441 179.157 68.9679 -5.7E+08 -1681.122 0.25456 -2521.683 0.277576 Ge(12) -224.5383 300.0414 -2875.418		Si(2)	236.8509	1593.269	-523.5847	-64.8926	1299.03	3.46E+08			-760.4356	-0.603197	1593.269		0.635962	
Si(4) 21.0507 876.237 -702.2376 160.1809 605.2087 -84509705 -723.2883 0.615284 -1084.932 0.649518 C(5) -220.4648 394.5872 -438.5544 -265.4333 42.5934 -10447115 -218.0896 -0.793807 394.5873 -0.237894 C(7) -476.5998 1136.251 -1444.024 -266.6757 280.9007 1.27E+08 -967.4245 0.560015 -1451.137 -0.973733 C(8) -1309.92 1192.982 -2342.165 -1072.996 -514.599 1.49E+09 -1032.245 0.540954 -1548.386 -0.350904 Ge(9) 1064.778 613.7112 746.6391 973.776 1473.919 1.17E+09 -318.1389 -0.713955 613.7113 0.997985 G(11) -475.6232 1416.989 -2279.099 383.1927 468.0341 1.458E+09 -2650.88 0.509142 .3976.319 -0.05226 S(11) -475.623 5134.5 -2297.612 699.6241 4300.506 -57E+08 -1681.122 <th></th> <td>Si(3)</td> <td>300.6817</td> <td>348.252</td> <td>-63.4098</td> <td>432.605</td> <td>532.8497</td> <td>-11632059</td> <td></td> <td></td> <td>-364.0915</td> <td>0.275328</td> <td>-546.1372</td> <td></td> <td>0.728352</td> <td></td>		Si(3)	300.6817	348.252	-63.4098	432.605	532.8497	-11632059			-364.0915	0.275328	-546.1372		0.728352	
C(5) -220.4648 394.5872 -438.5544 -265.4333 42.5934 -10447115 -210.0896 -0.793807 394.5873 -0.237894 C(6) -86.4844 374.4661 -326.6341 -95.787 163.1596 -5619970 -240.1497 -0.960465 374.466 -0.298431 C(7) -476.5998 1136.251 -1144.024 -266.6757 280.0907 1.27E+08 -967.4245 0.560105 -1451.137 -0.973733 C(8) -1309.92 1192.982 -2342.165 -1072.996 -514.599 -1.49E+09 -318.1389 -0.713955 613.7113 0.997985 C(10) -48.7617 798.2597 -0.633464 1.492.0943 -438.3825 -0.780607 376.319 -0.0633464 Si(11) -475.6322 1416.989 -2279.099 383.1927 469.0364 1.79E+08 -1881.476 0.047599 -2705.213 0.839597 Ge(12) -224.5383 3000.414 -2875.418 426.0649 1775.788 -1.58E+09 -2850.88 0.509142 -3976.319 -0.02526 Si(11) -476.522 5134.5 -229		Si(4)	21.0507	876.237	-702.2376	160.1809	605.2087	-84509705			-723.2883	0.615284	-1084.932		0.649518	
C(6) -86.4844 374.4661 -92.66311 -95.977 163.1596 -5619970 -240.1497 -0.960455 374.466 -0.298431 C(7) -476.5998 1136.251 -1444.024 -96.6757 280.9007 1.27E+08 -96.7425 0.56015 -1451.137 -0.973733 C(8) 1064.778 613.7112 746.6391 973.776 1473.919 1.17E+09 -138.1389 -0.713955 613.7113 0.997985 C(10) -48.7617 798.2597 -487.142 -142.5252 483.4114 14020943 -438.3825 -0.780053 798.2597 -0.63346 Si(11) -475.6232 1416.989 -2279.099 383.1927 469.0364 1.79E+08 -1803.476 0.047599 -2705.213 0.83957 Si(13) -446.3191 1582.931 -2127.441 179.5157 608.9679 -5.57E+08 -1681.122 0.255456 -2521.683 0.277576 Ge(14) 877.5062 5134.5 -2287.412 4300.506 -5.4E+09 -3175.118 -0.926619		C(5)	-220.4648	394.5872	-438.5544	-265.4333	42.5934	-10447115			-218.0896	-0.793807	394.5873		-0.237894	
C(7) -476.5998 1136.251 -1444.024 -266.6757 280.9007 1.27E+08 -967.4245 0.560015 -1451.137 -0.973733 C(8) -1309.92 1192.982 -2342.165 -1072.996 -514.599 -1.49E+09 -1032.245 0.540954 -1548.368 -0.350904 Ge(9) 1064.778 613.7112 746.6391 973.776 1473.919 1.17E+09 -318.1389 -0.713955 613.7113 0.997985 C(10) -48.7617 798.2597 -487.142 -142.523 483.4114 14020943 -438.3825 -0.786053 798.2597 -0.68346 Si(11) -475.6232 1416.989 -227.9099 383.1927 469.0364 1.78E+08 -1603.476 0.047599 -270.5213 0.839597 Ge(14) -475.622 1416.389 -2127.612 629.6241 4300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.227576 Ge(14) 877.5062 5134.5 -2297.612 629.6241 1300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.227576 G(16) -64.7432		C(6)	-86.4844	374.4661	-326.6341	-95.9787	163.1596	-5619970			-240.1497	-0.960465	374.466		-0.298431	
C(8) -1309.92 1192.982 -2342.165 -1072.996 -54.599 -1.49E+09 -1032.245 0.540954 -1548.368 -0.350904 Ge(9) 1064.778 613.7112 746.6391 973.776 1473.919 1.77E+09 -318.1389 -0.719955 613.7113 0.997985 C(10) -48.7617 798.2597 -487.1442 -142.5523 483.4114 14020943 -438.3825 -0.78063 798.2597 -0.663846 S(11) -475.632 1416.989 -2279.099 383.1927 469.0364 1.79E+08 -1803.476 0.047599 -2705.213 0.839597 Ge(14) 2245.538 3000.414 -2875.418 426.0649 1775.738 -158E+09 -2650.88 0.509142 -3976.319 -0.005226 S(13) -446.3191 1582.931 -2127.441 179.5157 608.0679 -5.7E+08 -1681.122 0.25516 212.843 0.252143 0.213333 0.277776 G(14) 877.5062 5134.5 0.2274 10.1498 1775.788		C(7)	-476.5998	1136.251	-1444.024	-266.6757	280.9007	1.27E+08			-967.4245	0.566015	-1451.137		-0.973733	
Ge(9) 1064.778 613.7112 746.6391 973.776 1473.919 1.17E+09 -318.1389 -0.713955 613.7113 0.997985 C(10) -48.7617 798.2597 -467.1442 -142.5523 483.4114 14020943 -438.3825 -0.713955 613.7113 0.997985 Si(11) -475.6232 1416.989 -2279.099 383.1927 469.0364 1.79E+08 -1803.476 0.047599 -2705.213 0.839597 Ge(2) -224.5383 300.414 -2875.418 426.0649 1.757.78 -1.58E+09 -2650.88 0.509142 -3976.319 -0.005226 Ge(14) 877.5062 5134.5 -2297.612 629.6241 4300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.252147 C(15) 2586.425 10266.7 -1601.376 -70.2382 9430.89 2.12E+09 -4187.301 -0.64655 244.4592 0.107966 C(16) -64.7432 24.4591 -170.8805 -27.3824 110.1498 1775789 -159.0695		C(8)	-1309.92	1192.982	-2342.165	-1072.996	-514.599	-1.49E+09			-1032.245	0.540954	-1548.368		-0.350904	
C(10) -48.7617 798.2597 -487.1442 -142.5523 483.4114 14020943 -438.3825 -0.786053 798.2597 -0.663846 Si(11) -475.6232 1416.989 -2279.099 383.1927 469.0364 1.79E+08 -1803.476 0.047599 -2705.213 0.839597 Ge(12) -224.5383 3000.414 -2875.418 426.0649 1775.738 -1.58E+09 -2650.88 0.509142 -3976.319 0.005226 Si(13) -446.3191 1582.931 -2127.441 179.5157 608.9679 -5.57E+08 -1681.122 0.225456 -2521.683 0.277576 Ge(14) 877.5062 5134.5 -2297.612 629.6241 4300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.225147 C(15) 2586.425 10266.7 -1601.376 -70.2382 9430.892 2.12E+049 -4187.801 -0.366619 10266.7 -0.348332 C(16) -64.7432 244.4591 -170.8905 -121.5686 98.2296 198.3842 -106.1473 -0.464655 244.4592 0.17986 C(17) -38.151 </td <th></th> <td>Ge(9)</td> <td>1064.778</td> <td>613.7112</td> <td>746.6391</td> <td>973.776</td> <td>1473.919</td> <td>1.17E+09</td> <td></td> <td></td> <td>-318.1389</td> <td>-0.713955</td> <td>613.7113</td> <td></td> <td>0.997985</td> <td></td>		Ge(9)	1064.778	613.7112	746.6391	973.776	1473.919	1.17E+09			-318.1389	-0.713955	613.7113		0.997985	
Si(11) -475.6232 1416.989 -2279.099 383.1927 469.0364 1.79E+08 -1803.476 0.047599 -2705.213 0.839597 Ge(12) -224.5383 3000.414 -2875.418 426.0649 1775.738 -1.58E+09 -2650.88 0.509142 -3976.319 -0.005226 Si(13) -446.3191 1582.931 -2127.441 179.5157 608.9679 -5.57E+08 -1681.122 0.25546 -2521.683 0.277576 Ge(14) 877.5062 5134.5 -2267.012 629.6241 4300.506 5.4E+09 -4187.801 -0.365619 10266.7 -0.348332 C(15) 2586.425 10266.7 -161.373 -170.8905 -121.5686 98.2296 1983842 -106.1473 -0.464655 244.4592 0.107986 C(17) -38.151 222.4513 -197.2025 -27.3824 110.1498 1775898 -150.0695 0.864604 -238.6042 0.239571 C(18) -53.2916 218.934 150.202 -327.488 22600776 -262.5462		C(10)	-48.7617	798.2597	-487.1442	-142.5523	483.4114	14020943			-438.3825	-0.786053	798.2597		-0.663846	
Ge(12) -224.5383 3000.414 -2875.418 426.0649 1775.738 -1.58E+09 -2650.88 0.509142 -3976.319 -0.005226 Si(13) -446.3191 1582.931 -2127.441 179.5157 608.9679 -5.57E+08 -1681.122 0.255456 -2521.683 0.277576 Ge(14) 877.5062 5134.5 -2297.612 629.6241 4300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.225147 C(15) 2586.425 10266.7 -1601.376 -70.2382 9430.889 2.12E+09 -4187.801 -0.365619 10266.7 -0.343832 C(17) -38.151 222.4513 -197.205 -27.3824 110.1498 1775898 -159.0695 0.864604 -238.042 0.239571 C(18) -53.2916 218.934 -156.206 -96.3186 92.6644 1671421 -102.929 -0.581974 218.934 0.138587 C(19) 26.4991 126.9126 -74.5851 42.9748 111.1075 -297103 -101.0842 <th< td=""><th>*</th><td>Si(11)</td><td>-475.6232</td><td>1416.989</td><td>-2279.099</td><td>383.1927</td><td>469.0364</td><td>1.79E+08</td><td></td><td></td><td>-1803.476</td><td>0.047599</td><td>-2705.213</td><td></td><td>0.839597</td><td></td></th<>	*	Si(11)	-475.6232	1416.989	-2279.099	383.1927	469.0364	1.79E+08			-1803.476	0.047599	-2705.213		0.839597	
Si(13) -446.3191 1582.931 -2127.441 179.5157 608.9679 -5.57E+08 -1681.122 0.255456 -2521.683 0.277576 Ge(14) 877.5062 5134.5 -2297.612 629.6241 4300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.252147 C(15) 2586.425 10266.7 -1601.376 -70.2382 9430.889 2.12E+09 -4187.801 -0.365619 10266.7 -0.348332 C(16) -64.7432 244.4591 -170.8905 -121.5686 98.2296 1983842 -106.1473 -0.464655 244.4592 0.107986 C(17) -38.151 222.4513 -197.2205 -27.3824 110.1498 1775898 -159.0695 0.86404 -238.6042 0.239571 C(18) -53.2916 218.934 -156.2206 -96.3186 92.6644 1671421 -102.929 -0.581974 218.934 0.138587 C(19) 26.4991 126.9126 -74.5851 42.9748 111.1075 -297103 -101.0842 0.67019 -151.6263 0.415218 O(20) 209.2108 471.0	Ö	Ge(12)	-224.5383	3000.414	-2875.418	426.0649	1775.738	-1.58E+09			-2650.88	0.509142	-3976.319		-0.005226	
Ge(14) 877.5062 5134.5 -2297.612 629.6241 4300.506 -5.4E+09 -3175.118 -0.92193 5134.5 0.252147 C(15) 2586.425 10266.7 -1601.376 -70.2382 9430.889 2.12E+09 -4187.801 -0.365619 10266.7 -0.348332 C(16) -64.7432 244.4591 -170.8905 -121.5686 98.2296 1983842 -106.1473 -0.464655 244.4592 0.107986 C(17) -38.151 222.4513 -197.2205 -27.3824 110.1498 1775898 -159.0695 0.864604 -238.6042 0.239571 C(18) -53.2916 218.934 -156.2206 -96.3186 92.6644 1671421 -102.929 -0.581974 218.934 0.138587 C(19) 26.4991 126.9126 -74.5851 42.9748 111.1075 -297103 -101.0842 0.674019 -151.6263 0.415218 O(20) 209.2108 471.057 -53.3354 157.719 523.2488 4907655 -248.2063 -0.7761	ξ.	Si(13)	-446.3191	1582.931	-2127.441	179.5157	608.9679	-5.57E+08			-1681.122	0.255456	-2521.683		0.277576	
C(15)2586.42510266.7-1601.376-70.23829430.8892.12E+09-4187.801-0.36561910266.7-0.348332C(16)-64.7432244.4591-170.8905-121.568698.2961983842-106.1473-0.464655244.45920.107986C(17)-38.151222.4513-197.205-27.3824110.14981775898-159.06950.864604-238.60420.239571C(18)-53.2916218.934-156.206-96.318692.66441671421-102.929-0.581974218.9340.138587C(19)26.4991126.9126-74.585142.9748111.1075-297103-101.08420.674019-151.62630.415218O(20)209.2108471.057-53.3354157.719523.2488-2660776-262.5462-0.803875471.057-0.299345C(21)-75.4783462.5502-333.884107.0793412863.6-722.3350.215688-1083.5030.168089O(23)-336.8436654.009-1007.089-102.865199.4236-47992185-670.24580.301813-1005.369-0.476587O(24)-229.7163764.4972-646.2729-322.8245279.948558766218-416.5566-0.776481764.4972-0.242906O(25)-1319.4042476.629-3471.12-818.7743331.68169.43E+08-2151.7160.534669-3227.574-0.278922O(26)-1258.4762354.633-3261.692-825.0144311.2794 <th< td=""><th>b/e</th><td>Ge(14)</td><td>877.5062</td><td>5134.5</td><td>-2297.612</td><td>629.6241</td><td>4300.506</td><td>-5.4E+09</td><td></td><td></td><td>-3175.118</td><td>-0.92193</td><td>5134.5</td><td></td><td>0.252147</td><td></td></th<>	b/e	Ge(14)	877.5062	5134.5	-2297.612	629.6241	4300.506	-5.4E+09			-3175.118	-0.92193	5134.5		0.252147	
C(16) -64.7432 244.4591 -170.8905 -121.5686 98.2296 1983842 -106.1473 -0.464655 244.4592 0.107986 C(17) -38.151 222.4513 -197.2205 -27.3824 110.1498 1775898 -159.0695 0.864604 -238.6042 0.239571 C(18) -53.2916 218.934 -156.2206 -96.3186 92.6644 1671421 -102.929 -0.581974 218.934 0.138587 C(19) 26.4991 126.9126 -74.5851 42.9748 111.1075 -297103 -101.0842 0.674019 -151.6263 0.415218 O(20) 209.2108 471.057 -53.3354 157.719 523.2488 -2660776 -262.5462 -0.803875 471.057 -0.299345 C(21) -75.4783 462.5502 -323.6846 -135.6388 232.8884 4907655 -248.2063 -0.757619 462.5501 0.180957 C(22) -331.9876 658.6004 -105.4323 -48.7194 107.0793 412863.6 -722.335 0.215688 -1083.503 0.168089 O(23) -336.8436 654	2	C(15)	2586.425	10266.7	-1601.376	-70.2382	9430.889	2.12E+09			-4187.801	-0.365619	10266.7		-0.348332	
C(17)-38.151222.4513-197.2205-27.3824110.14981775898-159.06950.864604-238.60420.239571C(18)-53.2916218.934-156.2206-96.318692.66441671421-102.929-0.581974218.9340.138587C(19)26.4991126.9126-74.585142.9748111.1075-297103-101.08420.674019-151.62630.415218O(20)209.2108471.057-53.3354157.719523.2488-2660776-262.5462-0.803875471.057-0.299345C(21)-75.4783462.5502-323.6846-135.6388232.88844907655-248.2063-0.757619462.55010.180957C(22)-331.9876658.6004-1054.323-48.7194107.0793412863.6-722.3350.215688-1083.5030.168089O(23)-336.8436654.4009-1007.089-102.865199.4236-47992185-670.24580.301813-1005.369-0.476587O(24)-229.7163764.4972-646.2729-322.8245279.948558766218-416.5566-0.776481764.4972-0.242906O(25)-1319.4042476.629-3471.12-818.7743331.68169.43E+08-2003.2160.567235-3004.825-0.358456O(26)-1258.4762354.633-3261.692-825.0144311.27948.96E+08-2003.2160.567235-3004.825-0.358456O(27)-647.23253206.098-3169.057-262.8	B3	C(16)	-64.7432	244.4591	-170.8905	-121.5686	98.2296	1983842			-106.1473	-0.464655	244.4592		0.107986	
C(18)-53.2916218.934-156.2206-96.318692.66441671421-102.929-0.581974218.9340.138587C(19)26.4991126.9126-74.585142.9748111.1075-297103-101.08420.674019-151.62630.415218O(20)209.2108471.057-53.3354157.719523.2488-2660776-262.5462-0.803875471.057-0.299345C(21)-75.4783462.5502-323.6846-135.6388232.88844907655-248.2063-0.757619462.55010.180957C(22)-331.9876658.6004-1054.323-48.7194107.0793412863.6-722.3350.215688-1083.5030.168089O(23)-336.8436654.4009-1007.089-102.865199.4236-47992185-670.24580.301813-1005.369-0.476587O(24)-229.7163764.4972-646.2729-322.8245279.948558766218-416.5566-0.776481764.4972-0.242906O(25)-1319.4042476.629-3471.12-818.7743331.68169.43E+08-2151.7160.534669-3227.574-0.278922O(26)-125.84762354.633-3261.692-825.0144311.27948.96E+08-2003.2160.695121-3782.737-0.28321O(27)-647.23253206.098-3169.057-262.80631490.1667.76E+08-2521.8250.695121-3782.737-0.28321		C(17)	-38.151	222.4513	-197.2205	-27.3824	110.1498	1775898			-159.0695	0.864604	-238.6042		0.239571	
C(19)26.4991126.9126-74.585142.9748111.1075-297103-101.08420.674019-151.62630.415218O(20)209.2108471.057-53.3354157.719523.2488-2660776-262.5462-0.803875471.057-0.299345C(21)-75.4783462.5502-323.6846-135.6388232.88844907655-248.2063-0.757619462.55010.180957C(22)-331.9876658.6004-1054.323-48.7194107.0793412863.6-722.3350.215688-1083.5030.168089O(23)-336.8436654.4009-1007.089-102.865199.4236-47992185-670.24580.301813-1005.369-0.476587O(24)-229.7163764.4972-646.2729-322.8245279.948558766218-416.5566-0.776481764.4972-0.242906O(25)-1319.4042476.629-3471.12-818.7743331.68169.43E+08-2151.7160.534669-3227.574-0.278922O(26)-1258.4762354.633-3261.692-825.0144311.27948.96E+08-2003.2160.567235-3004.825-0.358456O(27)-647.23253206.098-3169.057-262.80631490.1667.76E+08-2521.8250.695121-3782.737-0.283321		C(18)	-53.2916	218.934	-156.2206	-96.3186	92.6644	1671421			-102.929	-0.581974	218.934		0.138587	
O(20)209.2108471.057-53.3354157.719523.2488-2660776-262.5462-0.803875471.057-0.299345C(21)-75.4783462.5502-323.6846-135.6388232.88844907655-248.2063-0.757619462.55010.180957C(22)-331.9876658.6004-1054.323-48.7194107.0793412863.6-722.3350.215688-1083.5030.168089O(23)-336.8436654.4009-1007.089-102.865199.4236-47992185-670.24580.301813-1005.369-0.476587O(24)-229.7163764.4972-646.2729-322.8245279.948558766218-416.5566-0.776481764.4972-0.242906O(25)-1319.4042476.629-3471.12-818.7743331.68169.43E+08-2151.7160.534669-3227.574-0.278922O(26)-1258.4762354.633-3261.692-825.0144311.27948.96E+08-2003.2160.567235-3004.825-0.358456O(27)-647.23253206.098-3169.057-262.80631490.1667.76E+08-2521.8250.695121-3782.737-0.283321		C(19)	26.4991	126.9126	-74.5851	42.9748	111.1075	-297103			-101.0842	0.674019	-151.6263		0.415218	
C(21) -75.4783 462.5502 -323.6846 -135.6388 232.8884 4907655 -248.2063 -0.757619 462.5501 0.180957 C(22) -331.9876 658.6004 -1054.323 -48.7194 107.0793 412863.6 -722.335 0.215688 -1083.503 0.168089 O(23) -336.8436 654.4009 -1007.089 -102.8651 99.4236 -47992185 -670.2458 0.301813 -1005.369 -0.476587 O(24) -229.7163 764.4972 -646.2729 -322.8245 279.9485 58766218 -416.5566 -0.776481 764.4972 -0.242906 O(25) -1319.404 2476.629 -3471.12 -818.7743 331.6816 9.43E+08 -2151.716 0.534669 -3227.574 -0.278922 O(26) -1258.476 2354.633 -3261.692 -825.0144 311.2794 8.96E+08 -2003.216 0.567235 -3004.825 -0.358456 O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		O(20)	209.2108	471.057	-53.3354	157.719	523.2488	-2660776			-262.5462	-0.803875	471.057		-0.299345	
C(22) -331.9876 658.6004 -1054.323 -48.7194 107.0793 412863.6 -722.335 0.215688 -1083.503 0.168089 O(23) -336.8436 654.4009 -1007.089 -102.8651 99.4236 -47992185 -670.2458 0.301813 -1005.369 -0.476587 O(24) -229.7163 764.4972 -646.2729 -322.8245 279.9485 58766218 -416.5566 -0.776481 764.4972 -0.242906 O(25) -1319.404 2476.629 -3471.12 -818.7743 331.6816 9.43E+08 -2151.716 0.534669 -3227.574 -0.278922 O(26) -1258.476 2354.633 -3261.692 -825.0144 311.2794 8.96E+08 -2003.216 0.567235 -3004.825 -0.358456 O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		C(21)	-75.4783	462.5502	-323.6846	-135.6388	232.8884	4907655			-248.2063	-0.757619	462.5501		0.180957	
O(23) -336.8436 654.4009 -1007.089 -102.8651 99.4236 -47992185 -670.2458 0.301813 -1005.369 -0.476587 O(24) -229.7163 764.4972 -646.2729 -322.8245 279.9485 58766218 -416.5566 -0.776481 764.4972 -0.242906 O(25) -1319.404 2476.629 -3471.12 -818.7743 331.6816 9.43E+08 -2151.716 0.534669 -3227.574 -0.278922 O(26) -1258.476 2354.633 -3261.692 -825.0144 311.2794 8.96E+08 -2003.216 0.567235 -3004.825 -0.358456 O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		C(22)	-331.9876	658.6004	-1054.323	-48.7194	107.0793	412863.6			-722.335	0.215688	-1083.503		0.168089	
O(24) -229.7163 764.4972 -646.2729 -322.8245 279.9485 58766218 -416.5566 -0.776481 764.4972 -0.242906 O(25) -1319.404 2476.629 -3471.12 -818.7743 331.6816 9.43E+08 -2151.716 0.534669 -3227.574 -0.278922 O(26) -1258.476 2354.633 -3261.692 -825.0144 311.2794 8.96E+08 -2003.216 0.567235 -3004.825 -0.358456 O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		O(23)	-336.8436	654.4009	-1007.089	-102.8651	99.4236	-47992185			-670.2458	0.301813	-1005.369		-0.476587	
O(25) -1319.404 2476.629 -3471.12 -818.7743 331.6816 9.43E+08 -2151.716 0.534669 -3227.574 -0.278922 O(26) -1258.476 2354.633 -3261.692 -825.0144 311.2794 8.96E+08 -2003.216 0.567235 -3004.825 -0.358456 O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		O(24)	-229.7163	764.4972	-646.2729	-322.8245	279.9485	58766218			-416.5566	-0.776481	764.4972		-0.242906	
O(26) -1258.476 2354.633 -3261.692 -825.0144 311.2794 8.96E+08 -2003.216 0.567235 -3004.825 -0.358456 O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		O(25)	-1319.404	2476.629	-3471.12	-818.7743	331.6816	9.43E+08			-2151.716	0.534669	-3227.574		-0.278922	
O(27) -647.2325 3206.098 -3169.057 -262.8063 1490.166 7.76E+08 -2521.825 0.695121 -3782.737 -0.283321		O(26)	-1258.476	2354.633	-3261.692	-825.0144	311.2794	8.96E+08			-2003.216	0.567235	-3004.825		-0.358456	
		O(27)	-647.2325	3206.098	-3169.057	-262.8063	1490.166	7.76E+08			-2521.825	0.695121	-3782.737		-0.283321	-

in electric field of charges. The remarkable feature in these calculations is observed in calculations of n. We can see completely symmetrical curves at various methods and basis sets (Figure 3e). This symmetry does not exist after connecting to vitamin C (Figure 4e).

Although the maximum points are various in different methods but the symmetry is observed around the axis of zero charge. In other words, positive and negative areas show the same behaviour. Some minimums are observed for n at zero charge that are -7 and -3 for 6-311G and 6-

311G* basis sets respectively but to be positive for cc-pvdz basis set. This symmetry does not exist for σ_{iso} and σ_{aniso} and in positive area is more regular than negative area. But in the case $\Delta \sigma$ that is the result of σ iso and σ_{aniso} this symmetry can be seen again (Figure 3C). This symmetry is lower for the cc-pvdz basis set.

We want to examine what changes occur if the vitamin C connect to C₇Si₅Ge₃ cluster and under what circumstances the vitamin C establishes a strong connection and in what situation the connection would be weak. The results show

that vitamin C connects stronger to C₇Si₅Ge₃ cluster in positive charges than negative charge. Thus by creating a positive field vitamin C can be connected to the C₇Si₅Ge₃ cluster and delivered easily by using a negative filed. These observations are exactly observed for σ iso, σ_{aniso} and $\Delta \sigma$.

Natural bond orbital (NBO) analysis

The concepts of NBO analyses are useful for

Figure 3. Plot of (a) σ_{iso} (b) σ_{aniso} (c) $\Delta\sigma$ (d) δ and (e) η versus atomic charge for C₇ Si₅ Ge₃ cluster.

Figure 4. Plot of (a) σ_{iso} (b) σ_{aniso} (c) $\Delta\sigma$ d) δ and (e) η versus atomic charge for $C_7 SI_5GE_3$ cluster beside to vitamin C.

Table 3a. NBO analysis of C7 Si5 Ge3.

B3LYP/6-311G		B3LYP/6-311G*		B3LYP/cc-pvdz	
BD (1) C 1 -Si 2	0.8232* (sp ^{2.86})C+0.5678* (sp ^{2.17}) Si	BD (1) C 1 -Si 2	0.8246* (sp ^{2.80} d ^{0.01})C+ 0.5657* (sp ^{2.20} d ^{0.02})Si	BD (1) C 1 -Si 2	(sp ^{2.78} d ^{0.01})+0.5545*(sp ^{2.23} d ^{0.02}) *0.8322
BD (1) C 1 -Si 3	0.8462* (sp ^{1.46})C+0.5329*(sp ^{2.01})Si	BD (1) C 1 -Si 3	0.8493*(sp ^{1.43} d ^{0.01})C+ 0.5278* (sp ^{1.99} d ^{0.02})Si	BD (1) C 1 -Si 3	(sp ^{1.48} d ^{0.01})+0.5234* (sp ^{1.93} d ^{0.02}) *0.8521
BD (2) C 1 -Si 3	0.9047* (sp ^{15.34})C+0.4261* (sp ^{33.38})Si	BD (2) C 1 -Si 3	0.9246* (sp ^{19.10} d ^{0.07})C+ 0.3810* (sp ^{24.30} d ^{0.37})Si	BD (2) C 1 -Si 3	*(sp ^{17.94} d ^{0.10})+0.3868* (sp ^{27.67} d ^{0.49})0.9222
BD (1) C 1 -Si 4	0.8264* (sp ^{2.67})C+ 0.5631* (sp ^{2.06})Si	BD (1) C 1 -Si 4	0.8279*(sp ^{2.56} d ^{0.01})C+ 0.5609* (sp ^{2.11} d ^{0.02})Si	BD (1) C 1 -Si 4	*(sp ^{2.55} d ^{0.01})+0.5487*(sp ^{2.12} d ^{0.02}) 0.8360
BD (1)Si 2 - C 5	0.5627* (sp ^{2.39})Si+ 0.8267* (sp ^{2.18})C	BD (1)Si 2 - C 5	0.5621*(sp ^{2.32} d ^{0.03})Si+ 0.8271* (sp ^{2.17} d ^{0.01})C	BD (1)Si 2 - C 5	*(sp ^{2.37} d ^{0.03})+0.8327* (sp ^{2.21} d ^{0.01}) 0.55378
BD (1)Si 2 - C 10	0.5480* (sp ^{1.83})Si+ 0.8364(sp ^{2.20})C	BD (1)Si 2 - C 10	0.5448* (sp ^{1.83} d ^{0.02})Si+ 0.8386*(sp ^{2.24})C	BD (1)Si 2 - C 10	0.5328* (sp ^{1.85} d ^{0.02})+0.8462* (sp ^{2.24})
BD (1)Si 3 - C 7	0.5202* (sp ^{2.25})Si+0.8540*(sp ^{1.34})C	BD (1)Si 3 - C 7	0.5092*(sp ^{2.27} d ^{0.02})Si+ 0.8606* (sp ^{1.35})C	BD (1)Si 3 - C 7	0.5052* (sp ^{2.29} d ^{0.03})+0.5487* (sp ^{1.31})
BD (1)Si 3 - C 8	0.5097*(sp ^{1.99})Si+0.8604*(sp ^{1.49})C	BD (1)Si 3 - C 8	0.5007*(sp ^{2.01} d ^{0.02})Si+)* 0.8656sp ^{1.43})C	BD (1)Si 3 - C 8	0.4948* (sp ^{2.01} d ^{0.03})+0.8690* (sp ^{1.44})
BD (1)Si 4 - C 5	0.5527* (sp ^{2.52})Si+0.8334* (sp ^{1.85})C	BD (1)Si 4 - C 5	0.5497* (sp ^{2.48} d ^{0.03})Si+ 0.8354* (sp ^{1.84} d ^{0.01})C	BD (1)Si 4 - C 5	*(sp ^{2.51} d ^{0.03})+0.8414*(sp ^{1.84} d ^{0.01}) 0.5404
BD (1)Si 4 - C 6	0.5772* (sp ^{1.81})Si+ 0.8166* (sp ^{2.72})C	BD (1)Si 4 - C 6	0.5799* (sp ^{1.81} d ^{0.02})Si+ 0.8147* (sp ^{2.55})C	BD (1)Si 4 - C 6	$0.5653^{*} (sp^{1.83} d^{0.02}) + 0.8249^{*} (sp^{2.59} d^{0.01})$
BD (1) C 5 -Ge 9	0.8412* (sp ^{2.06})C+0.5407* (sp ^{1.59})Ge	BD (1) C 5 -Ge 9	0.8421*(sp ^{2.14} d ^{0.01})C+ 0.5393*(sp ^{1.66} d ^{0.01})Ge	BD (1) C 5 -Ge 9	$0.8458^{*}(sp^{2.18}d^{0.01})+0.5336^{*}(sp^{1.57}d^{0.01})$
BD (1) C 6 -Ge 9	0.7777* (sp ^{3.47})C+ 0.6287* (sp ^{0.93})Ge	BD (1) C 6 -Ge 9	0.7716*(sp ^{3.35})C+ 0.6361*(sp ^{0.94} d ^{0.01})Ge	BD (1) C 6 -Ge 9	0.7790* (sp ^{3.42} d ^{0.01})+0.6271*(sp ^{0.94})
BD (1) C 6 -Ge 12	0.8840* (sp)C+0.4676* (sp)Ge	BD (1) C 6 -Ge 12	0.8868*(sp ^{1.05})C+ 0.4621* (sp ^{1.62} d ^{0.04})Ge	BD (1) C 6 -Ge 12	0.8896*(sp ^{1.02})+0.4568*(sp ^{8.45} d ^{0.04})
BD (2) C 6 -Ge 12	0.8926* (sp ^{99.99})C+ 0.4509* (sp ^{28.28})Ge	BD (2) C 6 -Ge 12	0.9004*(sp ^{99.99} d ^{0.56})C+ 0.4350*(sp ^{19.59} d ^{0.17})Ge	BD (2) C 6 -Ge 12	$0.8975^* (sp^{99.99} d^{4.24}) + 0.4410^* (sp^{20.38} d^{0.16})$
BD (1) C 7 -Ge 14	0.8803*(sp ^{3.50})C+0.4744* (sp ^{15.56})Ge	BD (1) C 7 -Ge 14	0.8760*(sp ^{3.66})C+ 0.4823* (sp ^{12.36} d ^{0.03})Ge	BD (1) C 7 -Ge 14	$0.8803^{*} (sp^{3.69}d^{0.01}) + 0.4744^{*} (sp^{14.18}d^{0.05})$
BD(1)C7-C15	0.7150* (sp ^{1.87})C+ 0.6992* (sp ^{1.79})C	BD(1)C7-C15	0.7177*(sp ^{1.80} d ^{0.01})C+0.6963*(sp ^{1.73})C	BD(1)C7-C15	0.7157*(sp ^{1.85} d ^{0.01})+0.6984* (sp ^{1.77})
BD(2)C7-C15	0.7296* (sp ^{99.99})C+0.6839*(sp ^{99.99})C	BD(2)C7-C15	$0.7300^{*}(sp_{-1}^{99.99}d_{-1}^{0.93})C + 0.6834^{*}(sp_{-1}^{99.99}d_{-1}^{2.08})C$	BD(2)C7-C15	$0.7284^{*}(sp^{99.99}d^{0.03})+0.6852^{*}(sp^{99.99}d^{2.23})$
BD (1) C 8 -Ge 12	0.8929* (sp ^{4.70})C+0.4502*(sp ^{19.95})Ge	BD (1) C 8 -Ge 12	0.8953*(sp ^{5.84})C+ 0.4455* (sp ^{16.14} d ^{0.08})Ge	BD (1) C 8 -Ge 12	0.8956* (sp ^{5.26})+0.4449* (sp ^{17.70} d ^{0.09})
BD (1) C 8 -Si 13	0.8916* (sp ^{1.37})C+0.4528*(sp ^{5.41})Si	BD (1) C 8 -Si 13	0.8900*(sp ^{1.27})C+ 0.4559* (sp ^{4.24} d ^{0.05})Si	BD (1) C 8 -Si 13	0.8940*(sp ^{1.33})+0.4481* (sp ^{4.72} d ^{0.06})
BD (2) C 8 -Si 13	0.8600* (sp ^{99.99})C+0.5103* (sp ^{99.99})Si	BD (2) C 8 -Si 13	$0.8775^{*}(sp^{99.99}d^{0.2})C+ 0.4796^{*}(sp^{99.99}d^{42.84})Si$	BD (2) C 8 -Si 13	0.8717* (sp99.99d0.29)+0.4901* (sp99.99d51.51)
BD (1) C 10 -Si 11	$0.8886^* (sp_{102}^{1.02}) + 0.4586^* (sp_{102}^{5.55})$	BD (1) C 10 -Si 11	0.8875*(sp ^{1.03})C+ 0.4608* (sp ^{4.48} d ^{0.06})Si	BD (1) C 10 -Si 11	0.8919*(sp ^{1.8})+0.4522* (sp ^{4.99} d ^{0.07})
BD (1)Si 11 - C 15	0.4591* (sp ^{/.ou})Si+0.8884* (sp ^{1.29})C	BD (1)Si 11 - C 15	0.4590* (sp ^{0.39} d ^{0.09})Si+ 0.8884* (sp ^{1.34})C	BD (1)Si 11 - C 15	0.4512* (sp ^{0.9} (d ^{0.1})+0.8924* (sp ^{1.29})
BD (1)Ge 14 - C 15	0.4959* (sp ^{14.97})Ge+ 0.8684* (sp ^{3.86})C	BD (1)Ge 14 - C 15	0.5047*(sp ^{11.71} d ^{0.04})Ge+ 0.8633* (sp ^{3.81})C	BD (1)Ge 14 - C 15	0.4958*(sp ^{13.51} d ^{0.06})+0.8685* (sp ^{3.91})

Table 3b. C_7 Si₅ Ge₃ inside of vitamin C at different level of theory.

B3LYP/6-311G			B3LYP/6-311G*		B3LYP/cc-pvdz
BD(1) C 1 -Si 3	0.8419* (sp ^{1.65})C+ 0.5396* (sp ^{2.72})Si	BD(1) C 1 -Si 3	0.8419* (sp ^{1.65})C+ 0.5396* (sp ^{2.72})Si	BD(1) C 1 -Si 3	0.8533* (sp ^{1.62})C+ 0.5214* (sp ^{2.09} d ^{0.02})Si
(1)BD 4Si - 1C	0.8539*(s p ^{2.26})C+ 0.5205*(sp ^{2.13})Si	(1)BD 4Si - 1C	0.8539*(s p ^{2.26})C+ 0.5205*(sp ^{2.13})Si	(1)BD 4Si - 1C	0.8652* (sp ^{2.26} d ^{0.01})C+0.5014* (sp ^{2.08} d ^{0.02})Si
BD(2) C 1 -Si 4	0.8339* (sp ^{48.1})C+ 0.5520*(sp ^{8.04})Si	BD(2) C 1 -Si 4	0.8339* (sp ^{48.1})C+ 0.5520*(sp ^{8.04})Si	BD(2) C 1 -Si 4	0.8087* (sp ^{62.65} d ^{0.20})C+0.5882* (sp ^{5.95} d ^{0.03})Si
BD(1) C 1 -Ge 9	0.8454* (sp ^{2.35})C+ 0.5341* (sp ^{1.81})Ge	BD(1) C 1 -Ge 9	0.8454* (sp ^{2.35})C+ 0.5341* (sp ^{1.81})Ge	BD(1) C 1 -Ge 9	0.8584* (sp ^{2.35} d ^{0.01})C+0.5130* (sp ^{2.33} d ^{0.01})Ge
BD (1)Si 2 - C 7	0.4212* (sp ^{6.28})Si+ 0.9070* (sp ^{2.03})C	BD (1)Si 2 - C 7	0.4212* (sp ^{6.28})Si+ 0.9070* (sp ^{2.03})C	BD (1)Si 2 - C 7	0.3974*(sp ^{6.80} d ^{0.10})Si+0.9176* (sp ^{1.97} d ^{0.01})C
BD (1)Si 2 - C 10	0.4824* (sp ^{8.53})Si+ 0.8760* (sp ^{1.89})C	BD (1)Si 2 - C 10	0.4824* (sp ^{8.53})Si+ 0.8760* (sp ^{1.89})C	BD (1)Si 2 - C 10	0.4518*(sp ^{9.00} d ^{0.08})Si+0.8921* (sp ^{1.67} d ^{0.01})C
BD (1)Si 3 - C 7	0.5150* (sp ^{3.00})Si+ 0.8572* (sp ^{2.37})C	BD (1)Si 3 - C 7	0.5150* (sp ^{3.00})Si+ 0.8572* (sp ^{2.37})C	BD (1)Si 3 - C 7	0.4937*(sp ^{2.98} d ^{0.02})Si+0.8696* (sp ^{2.29} d _{0.01})C
BD (1)Si 3 - C 8	0.6091*(sp ^{2.38})Si+ 0.7931*(sp ^{8.22})C	BD (1)Si 3 - C 8	0.6091*(sp ^{2.38})Si+ 0.7931*(sp ^{8.22})C	BD (1)Si 3 - C 8	$0.6284^{*}(sp^{-1.81}d^{-0.01})Si + 0.7779^{*}(sp^{-9.89}d^{-0.04})C$
BD (1)Si 3 -Si 13	0.7978* (sp ^{4.29})Si+ *0.6030(sp ^{13.63})Si	BD (1)Si 3 -Si 13	0.7978* (sp ^{4.29})Si+ *0.6030(sp ^{13.63})Si	BD (1)Si 3 -Si 13	0.5123*(sp ^{2.59} d ^{0.03})Si+0.8588* (sp ^{1.00})Si
BD (1)Si 4 - C 6	0.5275*(sp ^{2.79})Si+* 0.8496 (sp ^{1.05})C	BD (1)Si 4 - C 6	0.5275*(sp ^{2.79})Si+* 0.8496 (sp ^{1.05})C	BD (1)Si 4 - C 6	0.6774*(sp ^{2.84} d ^{0.02})Si+0.7356* (sp ^{2.18} d ^{0.02})C
BD (1)Si 4 -Ge 12	0.7495*(sp ^{2.23})Si+ 0.6621*(sp ^{34.28})Ge	BD (1)Si 4 -Ge 12	0.7495*(sp ^{2.23})Si+ 0.6621*(sp ^{34.28})Ge	BD (1)Si 4 -Ge 12	0.7055* (sp ^{1.30})Si+0.7087* (sp ^{1.24})Ge

Table 3b. Contd.

1 27 1 17 1 27 1 17 sp62 32 33 57 0	~~~
BD(1)C5-C6 0.7050* (sp)C+ 0.7092* (sp)C BD(1)C5-C6 0.7050* (sp)C BD(1)C5-C6 0.6910* (sp)C+ 0.7092* (sp)C BD(1)C5-C6 0.6910* (sp)C+ 0.7228* (sp)C BD(1)C5-C6 0.6910* (sp)C+ 0.7092* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.7050* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.7050* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.7050* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.7050* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.7050* (sp)C BD(1)C5-C6 0.6910* (sp)C BD(1)C5-C6 0.691	.09)C
BD(2)C5-C6 0.6963* (sp ^{30.54})+ 0.7178* (sp ^{30.54})+ 0.7178* (sp ^{30.54}) BD(2)C5-C6 0.6963* (sp ^{30.54})+ 0.7178* (sp ^{30.54}) BD(2)C5-C6 0.7207* (sp ^{10.59} d ^{0.05})C+0.6932* (sp ^{40.05})C+0.693* (sp ^{40.05})C+0.693* (sp ^{40.05})C+0.6932* (sp ^{40.05})C+0.693* (sp ^{40.05})C+0.693* (sp ^{40.05})C+0.693* (sp ^{40.}	^o d ^{0.13})C
BD(3)C5-C6 0.7117* (sp22.30)C+ 0.7025* (sp $\frac{48.4}{100}$)C BD(3)C5-C6 0.7117* (sp22.30)C+ 0.7025* (sp $\frac{48.4}{100}$)C BD(3)C5-C6 0.8571*(sp $\frac{100}{100}$)C+0.5151* (sp $\frac{3.1}{100}$)C	⁵²)C
BD (1) C 5 -Ge 9 0.8471* (sp ^{1.06})C+ 0.5314* (sp ^{2.78} d ^{0.01})Ge BD (1) C 5 -Ge 9 0.8471* (sp ^{1.06})C+ 0.5314* (sp ^{2.78} d ^{0.01})Ge BD (1) C 5 -Ge 9 0.8876* (sp ^{3.06} d ^{0.01})C+ 0.4607* (sp ^{3.47} d	d ^{0.04})Ge
BD (1) C 7 -Si 11 0.8671* (sp ^{3.23})C+ 0.4982*(sp ^{3.42})Si BD (1) C 7 -Si 11 0.8671* (sp ^{3.23})C+ 0.4982*(sp ^{3.42})Si BD (1) C 7 -Si 11 0.9102* (sp ^{7.81} d ^{0.01})C+0.4141* (sp ^{18.44}	d ^{0.11})Si
BD (1) C7 -Ge 14 0.9087* (sp ^{6.35})C+ 0.4174*(sp ^{17.08} d ^{0.03})Ge BD (1) C7 -Ge 14 0.9087* (sp ^{6.35})C+ 0.4174*(sp ^{17.08} d ^{0.03})Ge BD (1) C7 -Ge 14 0.7842* (sp 13.20 d 0.02)C+0.6205* (sp 1.69 d	0.01)Ge
BD (1) C 8 -Ge 12 0.8183* (sp ^{10.10})C+ 0.5747*(sp ^{9.47} d ^{0.01})Ge BD (1) C 8 -Ge 12 0.8183* (sp ^{10.10})C+ 0.5747*(sp ^{9.47} d ^{0.01})Ge BD (1) C 8 -Ge 12 0.5775* (sp ^{10.49} d ^{0.11})C+ 0.8164* (sp ^{2.54} d ^{0.11})C+ 0.5747*(sp ^{9.47} d ^{0.01})Ge BD (1) C 8 -Ge 12 0.5775* (sp ^{10.49} d ^{0.11})C+ 0.8164* (sp ^{2.54} d ^{0.11})C+ 0.5747*(sp ^{9.47} d ^{0.01})Ge BD (1) C 8 -Ge 12 0.5775* (sp ^{10.49} d ^{0.11})C+ 0.5747*(sp ^{10.49} d ^{0.11})C+ 0.5747*(s	1 ^{0.02})Ge
BD (1)Ge 9 - C 10 0.5624*(sp 2.13)Ge+ 0.8268* (sp 2.00)C BD (1)Ge 9 - C 10 0.5624*(sp 2.13)Ge+ 0.8268* (sp 2.00)C BD (1)Ge 9 - C 10 0.5372*(sp 3.21 d 0.02)Ge+0.8434* (sp 2.07)	d ^{0.01})C
BD (1) C 10 -Si 11 0.8132* (sp ^{2.33})C+ 0.5820*(sp ^{1.85})Si BD (1) C 10 -Si 11 0.8132* (sp ^{2.33})C+ 0.5820*(sp ^{1.85})Si BD (1) C 10 -Si 11 0.3675*(sp ^{3.38} d ^{0.04})C+0.9300* (sp ^{6.77})	⁷)Si
BD (1)Si 11 - C 15 0.6309*(sp 1.41)Si+ 0.7759* (sp 8.77)C BD (1)Si 11 - C 15 0.6309*(sp 1.41)Si+ 0.7759* (sp 8.77)C BD (1)Si 11 - C 15 0.8314* (sp 2.39 d 0.01)Si+0.5557* (sp 2.39 d 0.01)Si+0.557* (sp 2.39 d 0.01)Si+0	d ^{0.01})C
BD(1)C16-C17 0.7063* (sp $^{1.64}$)C+ 0.7079* (sp $^{2.31}$)C BD(1)C16-C17 0.7063* (sp $^{1.64}$)C+ 0.7079* (sp $^{2.31}$)C BD(1)C16-C17 0.6047*(sp $^{1.42}$)C+0.7965* (sp $^{7.95}$ d $^{0.00}$	³)C
BD(1)C16-O20 0.5472(sp $^{3.75})$ + 0.8370* (sp $^{2.83})$ O BD(1)C16-O20 0.5472(sp $^{3.75})$ + 0.8370* (sp $^{2.83})$ O BD(1)C16-O20 0.7124* (sp $^{1.56})$ C+ 0.7018* (sp $^{2.33})$ C	
BD(1)C16-C21 0.7192* (sp ^{1.55})C+ 0.6948* (sp ^{2.16})C BD(1)C16-C21 0.7192* (sp ^{1.55})C+ 0.6948* (sp ^{2.16})C BD(1)C16-C21 0.5464* (sp ^{3.78} d ^{0.01})C+0.8375* (sp ^{2.16})C	^{.82})C
BD(1)C17-C18 0.7041* (sp $^{1.52}$)C+ 0.7101* (sp $^{1.54}$)C BD(1)C17-C18 0.7041* (sp $^{1.52}$)C+ 0.7101* (sp $^{1.54}$)C BD(1)C17-C18 0.7204* (sp $^{1.54}$)C+ 0.6936* (sp $^{2.12}$)C	
BD(1)C17-O26 0.6162* (sp $\frac{2.37}{1.00}$)C+ 0.7876* (sp $\frac{2.90}{1.00}$)O BD(1)C17-O26 0.6162* (sp $\frac{2.37}{1.00}$)C+ 0.7876* (sp $\frac{2.90}{1.00}$)O BD(1)C17-O26 0.7066* (sp $\frac{1.47}{1.00}$)C+0.7077* (sp $\frac{1.55}{1.00}$)O	
BD(2)C17-O26 0.5849* (sp ^{1.00})C+ 0.8111* (sp ^{1.00})O BD(2)C17-O26 0.5849* (sp ^{1.00})C+ 0.8111* (sp ^{1.00})O BD(2)C17-O26 0.6084* (sp ^{2.44})C+0.7936* (sp ^{2.58})O	
BD(1)C18-C19 0.7120* (sp $\frac{2.26}{2.26}$)C+ 0.7022* (sp $\frac{1.64}{2.26}$)C BD(1)C18-C19 0.7120* (sp $\frac{2.26}{2.26}$)C+ 0.7022* (sp $\frac{1.64}{2.26}$)C BD(1)C18-C19 0.5839* (sp $\frac{1.00}{2.26}$)C+ 0.8118* (sp $\frac{1.00}{2.26}$)C	
BD(1)C18-O25 0.6175* (sp $^{2.37}$)C+ 0.7866* (sp $^{2.92}$)O BD(1)C18-O25 0.6175* (sp $^{2.37}$)C+ 0.7866* (sp $^{2.92}$)O BD(1)C18-O25 0.7161* (sp $^{2.20}$)C+0.6980* (sp $^{1.56}$)O	
BD(2)C18-O25 0.6248* (sp ^{99.99})C+ 0.7808* (sp ^{1.00})O BD(2)C18-O25 0.6248* (sp ^{99.99})C+ 0.7808* (sp ^{1.00})O BD(2)C18-O25 0.6083* (sp ^{2.43})C+0.7937* (sp ^{2.58})O	
BD(1)C19-O20 0.5651* (sp ^{2.75})C+ 0.8250*(sp ^{2.69})O BD(1)C19-O20 0.5651* (sp ^{2.75})C+ 0.8250*(sp ^{2.69})O BD(1)C19-O20 0.6242* (^{sp 9.99} d ^{1.79})C+0.7813* (sp ^{1.0})0)
BD(1)C19-O24 0.5974* (sp $^{1.84}$)C+ 0.8019* (sp $^{1.72}$)O BD(1)C19-O24 0.5974* (sp $^{1.84}$)C+ 0.8019* (sp $^{1.72}$)O BD(1)C19-O24 0.5491* (sp $^{2.78}$ d $^{0.01}$)C+ 0.8357* (sp $^{2.4}$	⁴¹)O
BD(2)C19-O24 0.5988* (sp ^{99.99})C+ 0.8009* (sp ^{99.99})O BD(2)C19-O24 0.5988* (sp ^{99.99})C+ 0.8009* (sp ^{99.99})O BD(2)C19-O24 0.5811* (sp ^{1.92})C+ 0.8138* (sp ^{1.47})O	
BD(1)C21-C22 0.7449* (sp ^{1.60})C+ 0.6671* (sp ^{4.09})C BD(1)C21-C22 0.7449* (sp ^{1.60})C+ 0.6671* (sp ^{4.09})C BD(1)C21-C22 0.5872* (sp ^{9.99} d ^{16.07})C+0.8095* (sp ^{9.99} d ^{16.07})C+0.8005* (sp ^{9.99} d ^{16.07})C+0	⁹ d ^{5.92})C
BD(1)C21-O27 0.6097* (sp $\frac{2.37}{1.00}$)C+ 0.7926* (sp $\frac{4.73}{1.00}$)O BD(1)C21-O27 0.6097* (sp $\frac{2.37}{1.00}$)C+ 0.7926* (sp $\frac{4.73}{1.00}$)O BD(1)C21-O27 0.7443* (sp $\frac{1.59}{1.00}$)C+ 0.6678* (sp $\frac{4.04}{0.00}$)C+ 0.6097* (sp $\frac{2.37}{1.00}$)C+ 0.7926* (sp $\frac{4.73}{1.00}$)C+ 0.7926* (sp $\frac{4.73}{1.0$	⁰¹)O
BD(2)C21-O27 0.5979* (sp $\frac{1.00}{1.00}$)C+ 0.8016* (sp $\frac{42.71}{1.00}$)O BD(2)C21-O27 0.5979* (sp $\frac{1.00}{1.00}$)C+ 0.8016* (sp $\frac{42.71}{1.00}$)O BD(2)C21-O27 0.6063* (sp $\frac{2.42}{1.00}$)C+0.7952* (sp $\frac{4.26}{1.00}$)C+0.8016* (sp $\frac{42.71}{1.00}$)C+0.8016* (sp $\frac{42.71}{1.$	⁷¹)O
BD(1)C22-O23 0.5216* (sp ^{3.39})C+ 0.8532* (sp ^{3.41})O BD(1)C22-O23 0.5216* (sp ^{5.39})C+ 0.8532* (sp ^{3.41})O BD(1)C22-O23 0.5966* (sp ^{9.99} d ^{16.54})C+ 0.8025* (sp ^{37.20})	d 0.03)O

distributing electrons into molecular orbitals used for the one electron density matrix to define the shape of the atomic orbitals in molecular environ-ment and then derive molecular bonds from electron density between atoms. At each considered coordination, the bonding and antibonding coefficients of s and p orbital of Si-C were 0.5 and 0.8 for C₇Si₅Ge₃ cluster at B3LYP/6-311G, B3LYP/6-311G* and B3LYP/ccpvdz level of theory. But this order does not exist for C₇Si₅Ge₃ cluster inside vitamin C.

REFERENCES

- Monajjemi M, Lee VS, Khaleghian M, Honarparvar B, Mollaamin F (2010). Theoretical Description of Electromagnetic Nonbonded Interactions of Radical, Cationic, and Anionic NH2BHNBHNH2 Inside of the B18N18 Nanoring. J. Phys. Chem. C., 114: 15315-15330.
- Monajjemi M, Mahdavian L, Mollaamin F (2008). Characterization of nanocrystalline cylicon germanium film and nanotube in adsoption gas by monte carlo and langevin dynamic simulation. Bull. Chem. Soc. Ethiop., 22: 1-10. Monajjemi M, Mahdavian L, Mollaamin F, Khaleghian M (2009). Interaction of Na, Mg, AI, Si with Carbon Nanotube

(CNT): NMR and IR Study . Russian J. Inorg. Chem., 54: 1465-1473.

- Chopra NG, Luyken RJ, Herrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995). Boron Nitride Nanotubes. Sciences, 269: 966-967.
- Monajjemi M, Chegini H, Mollaamin F, Farahani P (2011). Theoretical Studies of Solvent Effect on Normal Mode Analysis and Thermodynamic Properties of Zigzag (50) Carbon Nanotube. Fullerenes, Nanotubes, Carbon Nanostructures, 19: 469-482.
- Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004). Boron Nitride Nanomesh. Sciences, 303: 217-220.

- Golberg D, Bando Y, Stephan O, Kurashima K (1998). Octahedral boron nitride fullerenes formed by electron beam irradiation Appl. Phys. Lett., 73: 2441-2443.
- Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998). Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl. Phys. A., 67: 107-111.
- Monajjemi M, Baei MT, Mollaamin F (2008). Quantum mechanic study of hydrogen chemisorptions on nanocluster vanadium surface. Russian J. Inorg. Chem., 53: 1430-1437.
- Mollaamin F, Gharibe S, Monajjemi M (2011). Synthesis of various nano and micro ZnSe morphologies by using hydrothermal method. Int. J. Phy. Sci., 6: 1496-1500.
- Monajjemi M, Ketabi S, Ghiasi R, Zare K, Passdar H, Karimkhani M, Saedi L (2004). Theoretical study of interaction between adenine and M+(M = Li, Na, K, Rb, Cs) and M2+ (M = Mg, Ca, Sr, Ba). Inter. Elect. J. Molec. Design, 3: 789-801.
- Maiti CK, Bera LK, Maikap S, Ray SK, Chakrabarti NB (2000). Growth of Silicon Germanium Alloy Layers. Def. Sci. J., 50: 299-315.
- Monajjemi M, khaleghian M, tadayonpour N, Mollaamin F (2010). The effect of different solvents and temperatures on stability of singlewalled carbon nanotube: A qm/md study Int. J. Nanosci., 9: 517-529.
- Froudakis G, Zdetsis A, Mühlhäuser M, Engels B, Peyerimhoff SD (1994). A comparative *ab initio* study of the Si₂C₄, Si₃C₃, and Si₄C₂ clusters. J. Chem. Phys., 101: 6790-6799.
- Mollaamin F, Baei MT, Monajjemi M, Zhiani R, Honarparvar B (2008). A DFT study of hydrogen chemisorption on v (100) surfaces. Russian J. Phys. Chem A., 82: 2354-2361.

- Froudakis GE, Muhlhauser M, Zdetsis AD (1995). Theoretical study of the Si₃C₂ cluster. Chem. Phys. Lett., 233: 619-626.
- Grev RS, Schaefer HF (1985). J. Geometrical structure and vibrational frequencies of several electronic states of Si₂C. Chem. Phys., 82: 4126-4130.
- Lammertsma K, Guner OF (1988). Structures and energies of disilicon dicarbide, C₂Si₂ . J. Am. Chem. Soc., 110: 5239-5245.
- Drebov N, Oger E, Rapps T, Kelting R, Schooss D, Weis P, Kappes J. Chem. Phys., 133: 224302-224310. Li SD, Zhao ZG, to Sn Wu HS, Jin ZH (2001). Ionization potentials, electron affinities, and vibrational frequencies of Ge_n (n = 5-10) neutrals and charged ions from density functional theory. J. Chem. Phys., 115: 9255-9259.
- Dichfield R (1974). Self-consistent perturbation theory of diamagnetism. Mol. Phys., 27: 789-807.
- Zurek E, Autschbach J (2004). Density Functional Calculations of the ¹³C NMR Chemical Shifts in (9,0) Single-Walled Carbon Nanotubes. J. Am. Chem. Soc., 126: 13079-13088
- Osmialowski B, Gawinecki R (2001). GIAO/DFT calculated chemical shifts of tautomeric species. 2-Phenacylpyridines and (Z)-2-(2hydroxy-2-phenylvinyl)pyridines. Magn. Reson. Chem., 39: 334-340.
- Becke DA (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. Sect. A., 38: 3098-3100.
- Lee C, Yang W, Parr RG (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 37: 785-789.