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Up-to-date information on forest cover is important for every country. Radar remote sensing technology 
has considerable potential to acquire cloud-free images in moist tropical forests due to frequent cloud 
cover. The objective of this study was to investigate the potential of Phased Array Type L-band SAR 
(PALSAR) imagery for forest cover mapping. 50-m orthorectified mosaic image of 2009 from L-band 
PALSAR was used for the study. Geo-referenced field photos were taken as ground truth data points and 
were organized to obtain regions of interest. K-means and decision tree classifications were carried out to 
discriminate forests from other land covers. Decision tree algorithm was more reliable than K-means and 
showed an overall accuracy assessment of 91.7 % and Kappa coefficient of 0.86. Decision tree estimated 
24.4 million hectares of forests, that is, 12.5 % higher than 21 million hectares reported by ITTO in 2011. L-
band PALSAR modelled backscatter output for the difference phase showed a grey tone pattern for forest 
cover similar to that of decision tree than to K-means; implying a spatial reliability for the modelled phase. 
Improved PALSAR-based forest cover mapping necessitates data coverage in both rainy and dry seasons.  
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INTRODUCTION 
 
The Congo Basin is the second largest rainforest in the 
world and is recognized as one of the focused regions for 
climate change action mechanism (Justice et al., 2001; 
Zhang et al., 2005). With its more than 200 million 
hectares of contiguous rainforests, approximately 40 % of 
the population depend on these forests for their 
livelihoods and 80 % of these practise slash-and-burn 
agriculture (Bahuchet, 1995). The Grand South of 
Cameroon is within the Congo basin and  harbors  a  very  
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large portion of the Cameroon rainforest. The forest cover 
of Cameroon has been changing due to human activities 
related to slash and burn agriculture, logging, fuel wood 
collection, continual expansion of market-oriented 
agriculture and urban expansion (Essama-Nssah and 
Gockowski 2000; Mertens and Lambin 2000; Devers and 
Vande Weghe 2007; Epule et al. 2011). Two million 
hectares of this forest have been lost between 1980 and 
1995 (Ndoye and Kaimowitz, 2000) and a report from 
Global Forest Watch in 2002 indicated an annual 
deforestation of 80 to 200 thousand hectares. In the year 
2000, forest cover was estimated at 24.9 million ha 
(Wilkie and Laporte 2001).  The state of the forest of the  
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Congo Basin in 2008 reported forest cover of Cameroon 
at approximately 22.5 million ha (de Wasseige et al. 
2009), while ITTO reported 21 million hectare in 2011.  

The Grand South has in the past received much 
research interest due to its contribution to greenhouse 
gas emissions into the atmosphere from deforestation 
and forest degradation. It is to be mentioned here that the 
forest cover of Cameroon was estimated in 1985 through 
the use of extensive field surveys and aerial photography 
(Letouzey 1985). Extensive field survey for example 
involves a lot of man-power and the interpretation of 
aerial photography is usually susceptible to operator 
fatigue. In addition, photos from aerial photography have 
to be converted to digital format, which is required to get 
them to Geographical Information Systems. Although 
shortcomings from this approach are compensated for by 
the use of expert knowledge, the result is usually 
compromising and difficult to validate.  
Technological advancement over the years has helped to 
improve data collection for forest cover estimates. 
Satellite remote sensing technology can collect 
information over an extended area of land in a relatively 
short time (Jensen 2007) and enables images to be 
collected in inaccessible areas. Remote sensing is 
efficient for forest cover mapping and is advancing at 
country specific level due to development of more 
efficient sensors to discriminate forest cover from other 
land covers.   

Remote sensing operations using optical sensors have 
been carried out in the Grand South of Cameroon for 
forest cover estimate. The maps of forest cover were 
established from multi-temporal spectral classification 
with data obtained from Advanced Very High Resolution 
Radiometer (AVHRR) based on red and near infrared 
channels at 1.1 km spatial resolution (Laporte et al. 
1998), Landsat TM (Thematic Mapper), ETM (Enhanced 
Thematic Mapper), and SPOT. Most of the acquisitions 
were done at coarse spatial resolution, which is good for 
global land coverage mapping, but disadvantageous at 
country-specific level (Belward and Lambin 1990; 
Mertens and Lambin 2000; Richards et al. 2000; Zhang 
et al. 2005). The forest of the Grand South is persistently 
covered with cloud and atmospheric impurities such as 
dust and smoke. Optical sensors are limited in acquiring 
cloud-free data and atmospheric impurities impede data 
collection. Radar remote sensing can overcome these 
problems (Lucas et al. 2004; Zhang et al. 2005; Ling et 
al. 2009; Ickowitz 2011). It has been shown that 
PALSAR-based forest cover map show large differences 
in forest cover estimates with GlobCover and FAO Forest 
Resource Assessment (FRA), but with very close 
estimate to that of MODIS (Dong et al. 2014).   

Up-to-date and accurate forest cover maps are 
important to guide the government in making proper 
forest management plans. Radar sensors operate in 
different wavelength bands (X, C, L and P) to 
discriminate land covers (Kasischke et al. 1997). The 

research presented in this paper aims to provide a new 
estimate of forest cover for 2009 of the Grand South 
using the 2009 data acquisition of the Advance Land 
Observing Satellite (ALOS) Phased Array L-band 
Synthetic Aperture Radar (PALSAR). L-band ALOS 
PALSAR sensor uses microwave system which is 
capable to transmit electromagnetic energy that 
penetrates cloud and atmospheric impurities for data 
acquisition on the Earth (Henderson and Lewis, 1998; 
Jensen 2007). Long wavelength such as L-band (23.5 
cm) has greater penetration into the forest. It is sensitive 
to large trees and big branches (Henderson and Lewis 
1998) and less sensitive to less dense vegetated areas 
such as farmlands, banana, tea, rubber plantations and 
slash-and-burn areas (Jensen 2007; Santoro et al., 
2009). Moisture content also affect microwave signals, 
which is important in depicting flooded areas under forest 
from pure water bodies and non-forest covers due to 
differences in grey tone levels (Saatchi and Soares 1997; 
Salas et al. 2002; Jensen 2007; Walker et al. 2010). 
PALSAR images show variations of pixel intensities 
called visual texture, which is characterized as the 
brightness or darkness of an image called tones. The 
spatial layout of the tones, usually grey-scale can 
practically be used to assess classifiers used in land 
cover classification (Tomppo et al. 1994; Soares et al. 
1998; Tuceryan and Jain 1998; Sawaya et al. 2010).  

The provision of up-to-date forest cover is part of 
Cameroon’s initiative in support of REDD+ mission 
(reducing emissions from deforestation and forest 
degradation) as REDD+ addresses issues on forest cover 
extent to model carbon sinks and carbon emissions. The 
study wants to investigate if L-band PALSAR 50 m 
orthorectified image provides an alternative and reliable 
source for mapping forest cover. We applied simple 
classification scheme with four land covers: Forest, 
others (that is, unidentified land-use), cropland and water 
bodies and we used a priori information on grey tones 
distribution to support the classification accuracy. In 
addition, geo-referenced field photos of the study area 
were used to support radar imagery from L-band 
PALSAR to see the spatial richness of the different 
polarizations. 
 
 
MATERIALS AND METHODS 
 
The Study Area 
 
The Grand South of Cameroon is located between 
latitudes 1° 88´–7° 22´ N and longitudes 8° 45´–16° 24´ E 
and characterized with altitudes that range from 0 m 
above sea level to above 4000 m on Mount Cameroon. It 
has an annual rainfall that ranges from 1600 mm to 3000 
mm. The study area is characterized by a set of 
biophysical conditions that favour crop production, thus, 
the expansion of market-oriented plantations (palms, tea,  
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rubber and banana) (Hoyle and Levang 2012). We visited 
three regions of the Grand South (Southwest, Centre and 
South). These regions were considered because large 
amounts of the forest cover have been cleared for 
plantation agriculture. 
 
PALSAR 50 m Orthorectified Mosaic Image Data 
 
ALOS PALSAR 50 m Orthorectified Mosaic data were 
procured from JAXA PALSAR website 
(http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_50_c_afr
ica.htm#a13). They were created with images in the 
ascending path at an off-nadir angle of 34.3 degree and 
were resampled into the 50 m by 50 m mosaic with one 
composite per year. Data for the study area was acquired 
from June 12, 2009 to November 17, 2009. It implies data 
was acquired when there was rainfall and cloud cover in 
most part of the Grand South. 

We used the PALSAR 50 m orthorectified mosaic 
product in 2009 with observational mode of Fine Beam 
Dual polarization (FBD). Due to variations in incident 
angle, topographic and geometric factors, the radar 
image, that is, its Digital Number (DN) values (amplitude 
values) were converted into normalized radar cross-
section in decibel (dB) according to the formula from 
JAXA also known as sigma naught (σ

0
) (Rosenqvist et al. 

2007) and the parameters from the metadata of each file:  
                                        σ

0 
(dB) = 10 X log10 {DN

2
} + CF                                                                          Eq. (1) 

 
where σ

0 
is the backscattering coefficient, DN is the 

digital number value of pixels in HH or HV and CF is the 
absolute calibration factor, which depends on the 
processing date and for Cameroon is -83. The model 
inputs for the PALSAR study were the following 
parameters: wavelength (L-band), polarizations (HH and 
HV) and incidence angle (34.3 degree). We further 
produced a ratio phase image (HH/HV) and a difference 
phase image  (HH-HV) using band math in ENVI to see 
which of HH, HV, HH/HV and HH-HV model outputs 
agreed most to PALSAR data for forest cover mapping 
(Miettinen and Liew 2011).  
 
Ground Reference Data 
 
Field survey was done in March 2012 using the Casio 
digital camera (Casio Exilim 14.1 megapixels (EX-
H20G)), which is equipped with a Hybrid-GPS system 
that combines a GPS receiver to take field photos of land 
covers.  The GPS-enabled camera actually marks the 
location of each photo with a waypoint (longitude, latitude 
and altitude).  

The ground truth geo-referenced photo data helped us 
to locate regions of forest cover, water bodies and non-
forest. In this light, many photo waypoints were taken to 
explore the high resolution imagery provided by Google 
Earth. To avoid manually adding latitude and longitude 
coordinates on Google Earth to create polygons for our 

regions of interest, the geo-referenced photos were 
automatically uploaded to the Global Geo-Referenced 
Field Photo Library (www.eomf.ou.edu/photos/) managed 
by the Earth Observation and Modeling Facility of the 
University of Oklahoma (Xiao et al. 2011). Using the 
library we were able to download photo files related to 
forest cover, non-forest and water bodies as kml files.  
The kml files were exported to Google Earth to digitize 
the different land classes. It is to be mentioned again that 
the study focuses on forest cover, and we just did simple 
classifications for forest cover, non-forest (croplands and 
others), and water bodies as our regions of interest. The 
polygons for the different ROIs were then converted to 
shapefiles using ArcGIS and later exported to ENVI. The 
ROIs were randomly divided into two training ROIs and 
validation ROIs.  
 
Land Cover Classification and Forest Identification 
 
Figure 1 shows the schematic workflow for the forest 
cover mapping in this study. Though there are many 
classifications schemes, we considered Decision tree and 
K-means classifications for image classification, and we 
compared the results from these two algorithms using 
three regions of the Grand South in which the field survey 
was done. K-means classification is an unsupervised 
classification, which is powerful in spectral resolution and 
Decision tree uses a series of binary decisions to split 
objects into their right categories for each pixel, and to a 
level of certainty, it will solve the problem of neighbouring 
pixels most especially in complex and heterogeneous 
landscapes like the Grand South. For both classifiers, we 
used ENVI software to obtain the area occupied by the 
three land covers (forest, non-forest (croplands and 
others) and water bodies) for the South, Centre and 
South west regions.  
 
Accuracy Evaluation of Forest Maps 
 
A sample of 368 ROIs was developed, based on geo-
referenced field photos we collected in 2012 using the 
high resolution images in the Google Earth; 162 ROI for 
the forest class, 150 ROI for non-forest and 56 ROI for 
water body. The samples were obtained in representative 
sites in all areas and were used for accuracy 
assessment. The representative sites were Bakingili 
forest reserve, the Bokwango forest site, the Campo-
Ma’an buffer zone and the Mbalmayo forest reserve. 
They cover an area of 92 ha, 87 ha, 81,500 ha and 9,700 
ha and the 368 ROIs and the number of pixels for each 
land cover is presented (Table 2). There are a total 
number of 7378 pixels, which was used to get the 
percentage of the area covered by our ROIs to the 
representative sites and the ratio is ~ 1.9 %.  

Accuracy assessment was to determine to what degree 
ground truth data points agreed with the classification 
results of the PALSAR data from the Decision tree and K- 

http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_50_c_africa.htm
http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_50_c_africa.htm
http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_50_c_africa.htm
http://www.eomf.ou.edu/photos/
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Figure 1. The workflow for mapping forest cover for the study area using PALSAR 
50 m orthorectified mosaic imagery. 

 
Table 1. Area estimates in hectare of forest (F), non-forest (NF) and water bodies (WB) from K-Mean and decision tree classifications for 
three regions within the Grand South where ground truth data were collected. 
 
Decision tree K-means 

 South Centre South west South Centre South west 

Land 
cover
s 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

Water 
bodies 

1,500 0.04 11,100 0.16 3,700 0.15 6,100 0.13 38,770 0.56 20,050 0.81 

Non-
forest 

445,200 9.31 1,427,20
0 

20.5
8 

609,100 24.59 142,900 2.99 659,260 9.50 274,200 11.0
7 

Forest 4,329,40
0 

90.6
5 

5,498,10
0 

79.2
6 

1,863,80
0 

75.26 4,627,10
0 

96.8
8 

6,238,37
0 

89.9
4 

2,182,30
0 

88.1
2 

 
 
means classifiers, but by examining the results of the 
three regions, we finally used a confusion matrix to 
continue analysis with Decision tree classifier for the 
various land covers (Table 2). 
 
 
RESULTS 
 
Land cover maps for the Grand South from decision 
tree and K-means classifiers 
 
The spatial distribution of land cover classes for the Grand  

South is provided in Figure 2 belonging to K-means (a) 
and Decision tree (b) classifications. It is to be mentioned 
that croplands and others in the legend will represent the 
non-forest class in later part of the results. From the land 
cover maps, result from the Decision tree classification 
estimates 24.4 million hectares of forest cover for 2009, 
while that of the K-means classification estimates 27.3 
million hectares of forest cover in 2009. The result from 
Decision tree is substantially lower by 13 % to 28 million 
hectare obtained by FAO in 2010 (FAO 2010) but larger 
(~ 16 %) than the 21 million hectare obtained by ITTO 
(ITTO 2011). 
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Figure 2. Land cover classes from K-means and Decision tree classifications. 

 
 
 

We classified the spatial distribution of land cover 
classes in regions were ground truth data points were 
taken, and the analysis of three main classes; forest, 
water bodies and non-forest (croplands and others) is 
provided in Table 1 for the South, Centre and Southwest 
regions. Results from the different land cover classes 
show that there was more forest in all three regions than 
the other two classes. K-means classifier still estimated 
higher amounts of forest cover than Decision tree 
classifier for the South, Centre and Southwest regions 

approximately by 6.23 %, 10.68 % and 12.86 % 
respectively (Table 1). There is a higher amount of water 
bodies estimated by the K-means classifier than Decision 
tree classifier. Decision tree classifier estimated more 
non-forest cover than K-means classifier with a 
remarkable difference in all three regions (Table 1 and 
Figure 3).  From visual inspection, it shows that K-means 
classifier allocated urban built-up, cocoa agro-forest, 
fallow lands, and plantations (tea, palms and banana) 
and permanently wetlands, which are  near  forest  or  far  
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Figure 3. Land cover maps for Centre, Southwest and South regions of the Grand South where ground truth data 

were collected.   

 
 
away from forest as forest cover class and included 
glacier on the mountain top to water bodies class 

(Figure3d). The lots of misclassifications by K-means 
prompted us to  choose  Decision  tree  classification  to  
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Figure 4. Forest area map for the Grand South of Cameroon demonstrating the classification details of forest cover 
(Green) and non-forest cover (white) based on decision tree classifier. 

 
 

report forest cover estimate for the Grand South shown in 
Figure 4. 
 
Accuracy Assessment of the Three Land Covers  
 
Table 2 is the confusion matrix upon validations from the 
result of the decision tree classification. The confusion 
matrix table shows that of the 2798 pixels belonging to 
the forest class, the decision tree algorithm correctly 
allocated 2796 pixels to the forest class. And the 
classification algorithm incorrectly allocated 2 pixels to 
the non-forest class given a percentage omission error of 
0.07 %. Also, 79 pixels were erroneously added to the 
forest class, 58 from water body and 21 from non-forest 
giving a 2.75 % commission error. Similarly the non-
forest and the water body classes have 3.65 % and 14.97 
% omission errors, respectively. The commission errors 
of non-forest and water body were 45.6 % and 0.09 % 
respectively. Finally, the overall accuracy was 91.7 % 
and the overall Kappa coefficient was 0.86.  
 
Signature Analyses of PALSAR backscatter from 
Different Land Cover Types 
 
Backscatter signature analyses were carried out on the 
three land cover types using statistical histogram analysis 

generated from backscatter values in HH and HV 
polarizations. From the histograms, average backscatter 
response from forest, non-forest and water bodies were 
calculated and it is observed that the response of forest 
cover in HH and HV backscatter is in the range of -11 
and -2.5 dB and -16 and -6 dB respectively. The 
response from non-forest in HH and HV backscatter is in 
the range of -18.5 and -4.5 dB and -25 and -11 dB 
respectively. The response from water bodies in HH and 
HV is in the range of -24 and 0 dB and -29 and -10.5 dB 
respectively.  From the different responses in HH and HV 
polarizations, it showed that there was overlapping of 
radar backscatter of the three classes at HH and HV 
(Figure 5).  

To confirm the dissimilarities of backscatter responses 
from HH and HV we examined and visually interpreted 
HH and HV polarization images shown in Figure 6. There 
is a demarcation in backscatter between flooded area 
and open water bodies in HH polarization (black 
rectangle in HH polarization, Figure 6) and no depiction 
of flooded water in HV polarization (Figure 6). Thus, HH 
polarization is more sensitive to water bodies and flood 
under forest (zoom in of black rectangle in Figure 6) while 
HV was less sensitive to water bodies and insensitive to 
flood under forest. This implies HV backscattering comes 
predominantly from canopy  scattering  because  there  is  
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Table 2. Confusion matrix for the land covers classification of PALSAR 50 m orthorectified imagery in 2009 using the decision tree classifier. 
 

  
Classified pixels 

Number of ground truth pixels   
Forest Non-forest Water body Total row 

Forest  2796 21 58 2875 
Non-forest 2 634 529 1165 
Water body 0 3 3335 3338 
Total column 2798 658 3922 7378 
Omission  2 24 587   
% omission  0.07 3.65 14.97   
Commission 79 531 3   
% Commission 0.09 45.6 2.75   
% Producer Accuracy 99.93 96.35 85.03   
% User Accuracy 97.25 54.42 99.91   
% Overall Accuracy 91.7       
Kappa Coefficient 0.86       
Overall match 6765       

 
 

 
Figure 5. Backscatter histograms of land covers from HH and HV polarizations 

 
 
no difference in its backscatter from flood under forest 
and non-flooded forest. The result is in accordance with 
the forest canopy scattering theory at HV backscatter 

(Kuga et al., 1990) and therefore HH backscatter 
signature is more useful in distinguishing flooded water 
from open water bodies, which is also in accordance with  
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Figure 6. L-band HH and HV ALOS PALSAR mosaic images 
generated for the Grand South of Cameroon. 

 
results from other studies (kasischke et al., 1997; 
Bourgeau-Chavez et al., 2001).  

The polarization image of HH showed that total 
backscatter is as a result of surface-related scattering 
and canopy scattering. Surface-related scattering is a 
function of trunk-ground interactions and canopy-ground 
interactions and direct surface scattering. This implies 
that PALSAR signals interacted with the ground surface 
to contribute to its total backscatter while HV polarization 
showed that total backscattering is from direct surface 
scattering. Although the trunk-ground interaction was 
stronger in HH than in HV, it contributed less to the total 
backscatter in HH. From visual interpretation it shows 
that canopy scattering dominates in both HH and HV 
polarizations (Figure 6), which when modelled could be 
useful in validating forest cover for the study area.  

We also examined the grey tone pattern in the HH and 
HV backscatter images of Figure 6. HH and HV 
backscatter show similarity in grey tones for the study 
area. Water bodies are clearly discriminated with a very 

dark grey tone due to its low backscatter (Figure 6) and 
this low backscatter coefficient have been reported in 
several studies (Chamundeeswari et al., 2007). Forest 
cover showed high HH and HV backscatter due to 
canopy reflection (the grey tone in the image) than that of 
water bodies (dark grey tone) while flood under forest 
showed bright grey tone in the HH polarization image 
where there is extremely high backscatter from the 
double-bounce between water, soil and trunk interactions 
(Ford et al. 1986; Waring et al. 1995) as shown in the 
black rectangle in HH image (Figure 6). 
 
 
DISCUSSION 
 
A comparison between the K-means and Decision 
Tree Classifiers 
 
We extracted three sample regions from the Grand South 
(Centre, South and Southwest) for detailed comparison of 
K-means and Decision tree classifiers. The results from 
this study showed that Decision tree classifier performed 
better than the K-means classifier (unsupervised 
classification). K-means classifier showed larger amounts 
of water bodies and forest owing to its high level of 
spectral pattern recognition (Tou and Gonzalez 1974). 
For example, in the K-means method, glacier was 
included in the water body class (Figure 3d, see red 
rectangle) and the forest class may include other 
vegetation types such as palms, tea, banana plantations, 
and permanent wetlands and other growing crops which 
become very green during the rainy season, at the time 
which the ALOS PALSAR observation scene was 
covered. 

The expanding population growth and population 
density in these regions are inextricably linked to 
urbanization, increase on fuel wood collection, 
deforestation for market-oriented agricultural land by the 
rich and slash and burn agriculture for income generation 
for smallholder farmers to meet the increasing demand 
for food. Decision tree classifier showed high spatial 
agreement with the frequent slash and burn agriculture 
that is heavily carried out by small-scale farmers in the 
regions due to the search for fertile for food security and 
income generation for sustainable livelihood. Though we 
focussed on three classes to have just the forest cover of 
interest, Decision tree has the ability to break complex 
condition of objects into simpler objects that have more 
homogenous samples before making a final decision 
(Simard et al. 2000; Lilles and et al. 2008) and is for the 
reason why it performed better than K-means, and was 
later used for the accuracy assessment for forest cover 
map. It is a learning algorithm that uses knowledge of 
individual land cover types and explores image data 
associated to individual land cover types. For example, 
for the non-forest class that included tea and banana 
plantations, which usually show characteristics of conti- 
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Figure 7. L-band modelled difference (HH-HV) and ratio (HH/HV) 
ALOS PALSAR mosaic images generated for the Grand South of 
Cameroon. We note the striking similar appearance of forest cover in 
light grey tone of HH-HV model with that of forest cover map in Figure 
4. 

 
 
nuous forest canopy, it was able to automatically 
maximize the information from the backscattering of 
forest cover and discarded neighbouring features that 
seem to relate to forest class but with less 
backscattering. Therefore, the forest, non-forest and 
water body were successfully partitioned for maximum 
information such that the next splits are more 
homogenous based on the test from each branch. Thus, 
it uses tree kind of method to separate classes up to 
simplifying what was complex to features more relevant 
to distinguish. Previous studies have found it appropriate 
for image classification using radar data because it takes 
advantage of backscattering and proves to be an efficient 
classifier to forest cover. This therefore suggests that K-
means is a poor classifier for forest cover in the study 
area with high demographic and climatic constraints. 
 
 

Potential Sources of Errors in Forest Classification 
 
Earlier studies have used single polarization data from 
JERS-1 to depict clear-cuts and develop forest cover 
map (Simard et al. 2000) but it has been shown that 
single polarization-based algorithm has a deficiency to 

properly delineate forest cover (Miettinen and Liew 2011). 
This study evaluated the potential of the PALSAR fine 
beam dual polarization that has also been evaluated for 
other studies for forest delineation.  The map derived 
from ALOS PALSAR provide reliable result not only 
because of the dual polarizations HH and HV, but also 
because of the ratio and difference modelled phase 
backscatter images obtained from band math in ENVI 4.8 
which increase the contrast between forest cover and 
non-forest cover and the nature in which the shapes of 
the land forms appear in the study area. Backscattering 
signatures are very good for separability of land covers, 
thus, from the histograms, one could clearly see where 
the land covers separate from each other and where they 
overlap to confirm the results of the confusion matrix 
(Table 2). Backscatter histograms overlap in HH and HV 
polarizations, but the overlapping of non-forest (croplands 
and others) and forest classes is due to the fact that most 
non-forest pixels are found near forest cover. For 
example, farmlands of less than a hectare are 
established within or very close to forests. In addition, 
many houses in rural areas are built near the forest so 
reflections from roof of houses can cause considerable 
high radar backscatter. In addition, the image of the 
difference phase (Figure 7) reveals a remarkable 
potential of L-band ALOS PALSAR. The phase difference 
is based on the scattering component that contributed 
more to the total HH and HV backscatter. It has been 
shown that the phase difference of total backscatter is 
proportionate to dominant scattering component. For our 
study, the dominant scattering component for HH and HV 
is the canopy. Therefore the modelled phase difference is 
equal to the total HH and HV backscatter that mainly 
came from the canopy. The model phase difference is 
therefore similar to that of the canopy which is the forest 
cover. In addition, a visual comparison of the Decision 
tree classifier output for forest cover distribution of the 
Grand South (Figure 4) showed an agreeable result from 
the grey tone distribution of the modelled HH-HV image 
(Figure 7). Furthermore, the effect of canopy cover on L-
band backscatter response of the study area was visually 
verified using field photos of the Global Geo-referenced 
Field Photo Library. Figure 8 is a region of the study area 
which is a forest/savannah transition zone. It is clear from 
the image tones that HH-HV clearly demarcates forest 
cover from non-forest covers than HH, HV and HH/HV 
(compare Figure 8 with Figure 9). Image texture is one of 
the immediate applications to support the performance of 
a classifier because it has a special relationship of the 
spatial variation in pixel intensities. (Tuceryan and Jain 
1998; Champion et al. 2013). This therefore implies the 
use of L-band HH-HV can be used in the depiction of 
forest cover for this study area. However, within the forest 
areas, slash-and-burn agriculture are practiced and the 
50-m orthorectified data must have overlooked this land 
cover since most of them are usually less than 50 m X 50 
m, which is less than the spatial resolution of the sensor.  
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Figure 8. Part of the study area to compare reliability of results from HH, HV, the difference phase (HH-
HV) and the ratio phase (HH/HV) polarizations with geo-referenced photos 

 
 
 

 
 

Figure 9. Part of the study area under the Global Geo-referenced Field Photo Library.  

 
 
 
 
In addition, the complexity of the landscape might have 
also placed old fallow lands into the forest class. 
Therefore, small classification errors at boundaries 

between forest canopy/slash-and-burn agriculture/timber 
trails/canopy opening areas in the Decision tree algorithm 
might have occurred due  to  the  50 m  spatial  resolution  
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used in the study. 
 
ALOS PALSAR Analysis and Validation of Forest 
Cover Distribution  
 
Radar data analysis and image interpretation is usually 
facilitated by backscatter models most especially forest 
properties (van der Sanden, 1997). So, PALSAR image 
outputs of backscatter signatures were modelled for HH 
and HV polarizations using band math and Figure 7 show 
the modelled difference (HH-HV) and ratio (HH/HV) 
image of L-band backscatter intended for use in 
validating the spatial distribution of forest cover for the 
Grand South. Visually, the ratio phase displayed a 
perspective view of the study area in relations to hills and 
valleys than HH and HV, while the difference phase 
displayed a grey tone pattern similar to the spatial 
distribution of forest cover obtained by Decision tree 
(Figure 4) for the study area. There is a large contrast in 
terms of grey tones in the HH-HV image (Figure 7) to that 
of HH and HV polarization images (Figure 6). The very 
bright grey tone represents non-forest and water body 
classes while the forest cover is represented by the light 
grey tone. To confirm this, we compared side by side 
Figures 8 (which is the area in the red rectangle of HH, 
HV, and the modelled images) with that of Figure 9. 
Figure 9 is a particular spatial region of the study area 
(forest/savannah transition zone) uploaded with 
representative geo-referenced field photos in the Global 
Geo-referenced Field Photo Library to support and 
validate forest cover distribution by Decision tree and the 
difference phase of the PALSAR image. From Figure 9, 
the pale green area is forest cover and is equal to the 
light grey tone of a similar section of the HH-HV image 
(Figure 8) and the grey area of Figure 9 is equal to the 
very light grey tone of a similar section of the difference 
image (Figure 8). Visually, Figure 8, which is the result 
from the analysis using the enlarged windows of the red 
rectangles of Figure 6 and 7 looked promising with HH-
HV window than the rest of the other windows HH, HV 
and HH/HV (Figure 8). This method provides information 
about the spatial reliability of this modelled phase to the 
forest distribution of the Grand South. 
 
 
CONCLUSIONS 
 
This paper introduces L–band PALSAR 50 m 
orthorectified mosaic imagery for mapping forest cover in 
the Grand South of Cameroon using Decision tree 
classifier. As far as we know, this is the first work that 
shows a 50 m spatial resolution forest cover of the Grand 
South derived from PALSAR orthorectified mosaic 
imagery. Based on our findings we estimated forest cover 
for the 2009 PALSAR scene to be 24.4 million hectares 
with an overall accuracy of 91.7 %.  Our investigation 
showed that PALSAR imagery can be well interpreted 

and thus seemed to be a good sensor for forest and 
detection of flood under forest vegetation, which is 
usually difficult for other sensors to detect. In this study, a 
new approach for validating radar imagery using the 
Global Geo-referenced Field Photo Library is introduced. 
The method showed the importance of using geo-
referenced field photos to get reliable results as to which 
polarizations and/or modelled backscatter image best 
demarcates forest cover distribution from non-forest 
cover. We therefore conclude that Decision tree 
classification performed better in the classification of land 
covers and the HH-HV modelled phase of the radar 
backscatter was the best for depicting forest cover 
distribution from non-forest cover. 

Forest cover maps are very important for forest 
managers to monitor areas that are undergoing high 
levels of deforestation and forest degradation and guiding 
decision in forest resource management. Despite the 
great potential of ALOS PALSAR data acquisition, what is 
limited in this part of its Earth observation is the seasonal 
acquisition of data. It is recommended that continual 
ALOS PALSAR observation be taken over the area 
during the dry and rainy seasons so that data can be 
compared on the basis of seasons as moisture content 
has a lot to play on radar backscattering. It is also hoped 
that further studies incorporate observations from a 
sensor like Moderate Resolution Imaging 
Spectroradiometer (MODIS), which has a moderate 
spatial resolution and very high temporal resolution to 
facilitate the monitoring of dynamic changes in forest 
cover areas (Senf et al. 2013; Dong et al. 2014).  
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