

International Journal of Plant Breeding and Genetics ISSN 5756-2148 Vol. 6 (10), pp. 001-006, October, 2019. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Evaluation of some hybrid rice varieties in under different sowing times

Ali Abdalla Basyouni Abou-Khalif

Rice research and training center, filed crops, research institute, ARC, Egypt. E-mail: khalifaaliabdalla@yahoo.com.

Accepted 26 March, 2019

A field experiment was conducted in the experimental farm of Rice Research and Training Center (RRTC) – Sakha, Kafr- El Sheikh Governorate, and Egypt during rice season in 2008 for physiological evaluation of some hybrid rice varieties in different sowing dates. Four hybrid rice H1, H2, GZ 6522 and GZ 6903 were used. Seeds were sown on six different sowing dates April 10th, April 20th, May 1st, May 10th, May 20th and June 1st; and seedlings of 26 days old were transplanted at 20 × 20 cm spacing. All agricultural practices recommended for each cultivar were applied. Nitrogen fertilizer was used as urea (46.5% N) in two splits; that is, 2/3 were added and mixed in dry soil before flooding of irrigation water and the other 1/3 was added at panicle initiation stage. Experimental design was split plot design, with sowing dates as main and varieties as sub plot treatments. Results indicated that early date of sowing (April 20th) was superior to other dates of sowing for MT, PI, HD, number of tillers /M² (plant height and root length) at PI and HD stage, chlorophyll content, number of days up to PI and HD, leaf area index, sink capacity , spikelets-leaf area ratio, number of grains / panicle, panicle length(cm), 1000-grain weight (g), number of panicles/ M², panicle weight (g) and grain yield (ton/ha). Sterility percentage was the lowest in sowing 20th April. 1st of June, sowing gave the lowest with all traits under study. H1 hybrid rice variety surpassed other varieties for all characters studied except for number of days to PI and HD.

Key words: Sowing dates, hybrid rice, physiological characters and yield.

INTRODUCTION

The variation in rice production could be attributable to different climates when other conditions are suitable. The optimal growing season of popular cultivars has been determined by testing their growth and yields at different sowing dates. Singh and Parsed (1999), Hari et al. (1999), and Pirdashfy et al. (2000) . Found that delayed sowing decreased the grain and, straw yield, harvest index, tiller number, panicle length, number of grain/panicle and fertility percentage. Sherief et al. (2000) studied the effect of sowing dates (April 25th May 10th, May 25th and June 10th) on yield and yield components of rice. They showed marked effect on number of panicles /m², number of filled grains / panicle, 1000-grain weight, grain and straw yields/fed by early sowing (May 10). As com-pared to the planting in April 25th, however, late planting in May 25th or June 10 significantly reduced the above characteristics mentioned. El-Hity et al. (1987) found that the number of days from sowing to panicle initiation (P.I), maximum tillering (M.T.), heading dates (H.D.) and grain yield (T/ha) were drastically reduced with delay of sowing time. Khalifa (2005) observed that early sowing date on April 20th gave the highest values of leaf area index (LAI),

sink capacity [number of spikelets per M² X1000], spikelets/leaf area ratio, panicle length, and number of filled grains (%). H5 hybrid rice cultivar surpassed the other cultivars in leaf area index and sink capacity (Toole, 1993).

Reports of Ritchie et al. (1989), Penning de Varies et al. (1989), William et al. (1989), Singh et al. (1993) and Toth (1978) indicated that the highest grain yield of rice came from the 2^{nd} may of sowing under of Philippines conditions.

More than 80% variation in rice yield was attributable to variation in spikelet number / m^2 at different of the seasonal (Yoshida and Parao, 1976).

MATERIALS AND METHODS

A field experiment was conducted in Rice Research and training center (Sakha—kafr El sheikh – Egypt). During season for physio-logical evaluation of some hybrid rice varieties under different sowing dates. Four rice hybrids - H1, H2, GZ 6522 and GZ 6903 were tested in six sowing dates, that is, (D1) April 10th, (D2) April 20th, (D3) May 1st, (D4) May 10th, (D5) May 20th and (D6) June 1st, and the seedlings of 26 days age were transplanted at 20×20 cm

Sowing dates	April	AprilMay	/ 1 st	Мау	May 20 ^m	June 1 st	B.V.P	P.S.P
	10 th	20 th		10 th				
Rice varieties								
	Numb	er of days	from sow	ing to ma	ximum tiller	ring (MT)		
Rice varieties	70		60	55	54	52		
H1	73	65	58	56	54	54		
H2	64	70	54	51	47	46		
GZ 6522	75	63	62	59	55	48		
GZ 6903		73						
LSD at 5%								3.71
CV								3.3
	Num	ber of day	/s from so	wing to p	anicle initiat	ion (PI)		
Rice varieties								
H1	74	70	62	60	59	57		
H2	77	74	64	61	59	59		
GZ 6522	68	67	58	56	52	51		
GZ 6903	80	77	66	64	60	53		
LSD at 5%								3.1
CV								2.4
		Number o	f days fro	m sowing	to 50% head	ding		
Rice varieties								
H1	108	105	95	95	94	92	73	14
H2	112	107	96	95	94	94	77	18
GZ 6522	102	101	96	91	87	86	67	16
GZ 6903	115	112	100	99	95	88	80	27
LSD at 5%								3.13
CV								1.7

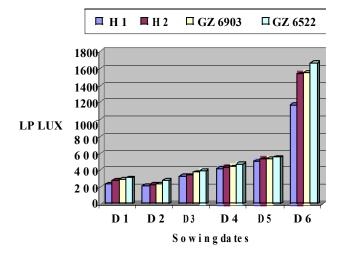
Table 1. Number of days from sowing date up to maximum tillering, Panicle initiation, heading dates, B.V.P and P.S.P. of some hybrid rice as affected by different sowing dates.

B.V.P = basic vegetative phase = (the highest date to heading - 35 days).

PSP = photoperiod sensitive phase = (the highest date of heading – the lowest date to heading Yoshida and Parao 1976).

spacing in 4 × 4 M plots. All cultural practices were applied uniformly as recommended for rice varieties. The split plot design with four replications was used. Sowing dates were allocated in the main plots, while rice varieties occurred in sub plot. Nitrogen fertilizer was used in the urea form (46.5%N) in two splits (2/3 of dose were applied and mixed in the dry soil before flooding, and the other 1/3 dose was added at panicle initiation stage). Maximum tillering, panicle initiation and heading dates were recorded for each variety considering the number of days from sowing up to maximum tillering, panicle initiation and 50% heading respectively. After complete heading, leaf area index was recorded using leaf area meter and total chlorophyll content in the leaves of plants was recorded using chlorophyll meter (5 SPAD-502 Minolta Camera Co. Ltd.), Japan (Futuhara et al., 1979). Plant height was measured prior to harvest as the distance between soil surfaces up to the top of the main panicle. Number of tillers /hill was counted. Average number of tillers for five hills calculated. The seedling and plant were carefully pulled to keep whole root and then transferred to the laboratory to determine the following, plant height (cm) it was determined for each sample in cm from the base to the tip of the tallest leaf blade and root length (cm) was determined by the same way as in plant length. Grain yield was measured from 12 m² (3×4

m) in the center of sub-plot. Grain yield was adjusted to 14% moisture content determined according to Yoshida (1981). Physiological parameters such as Harvest index (Economic yield/ Biological yield) (RRTC, 2002); B.V.P (basic vegetative phase) (the highest date to heading – 35 days); PSP (photoperiod sensitive phase) (the highest date of heading – the lowest date to heading). Sink capacity (number of spike lets per m² Yoshida and Parao, 1976); Spike lets-leaf area ratio (number of spikelets/ unit leaf area), 1000-grain weight and number of grain per panicle were also recorded. Data collected were subjected to statistical analysis of variance according to Gomez and Gomez (1984) using IRRISTAT computer program.


RESULTS AND DISCUSSION

Mean of observations recorded and the results of statistical analysis are given in Tables 1 - 5.

Data in Table 1 showed that number of days from sowing up MT, PI and HD were gradually decreased to delay of sowing up to June 1st. GZ 6903 surpassed other

Number	PI s	tage	HD stage		
of till <u>e</u> rs	Plant	Root	Plant	Root	
/M ²	height	length	height	length	
361	62	31.08	97.08	15.50	
404	65	31.08	97.75	17.22	
373	63	30.65	95.08	15.77	
347	61	29.92	93.17	15.23	
306	59	28.92	91.50	14.17	
254	58	25.75	89.00	13.36	
32.22	2.59	1.09	1.39	1.10	
8.40	3.6	3.10	1.3	6.20	
374	62	31.17	95.44	16.77	
353	57	29.82	91.28	15.80	
304	64	27.83	93.56	12.99	
332	62	29.44	95.44	15.27	
21.89	2.48	1.11	2.12	0.83	
6.70	4.0	3.70	2.2	5.40	
	of tillers /M ² 361 404 373 347 306 254 32.22 8.40 374 353 304 332 21.89	of tillers /M ² Plant height 361 62 404 65 373 63 347 61 306 59 254 58 32.22 2.59 8.40 3.6 374 62 353 57 304 64 332 62 21.89 2.48	of tillers /M ² Plant height Root length 361 62 31.08 404 65 31.08 373 63 30.65 347 61 29.92 306 59 28.92 254 58 25.75 32.22 2.59 1.09 8.40 3.6 3.10 374 62 31.17 353 57 29.82 304 64 27.83 332 62 29.44 21.89 2.48 1.11	of tillers M^2 Plant heightRoot lengthPlant height36162 31.08 97.08 40465 31.08 97.75 37363 30.65 95.08 34761 29.92 93.17 30659 28.92 91.50 25458 25.75 89.00 32.222.59 1.09 1.39 8.40 3.6 3.10 1.3 37462 31.17 95.44 353 57 29.82 91.28 304 64 27.83 93.56 332 62 29.44 95.44 21.89 2.48 1.11 2.12	

Table 2. Number of tillers / M2, (plant height, Root length) at panicle initiation (PI) and heading dates (HD) stage as affected by some hybrid rice under different sowing dates.

Figure 1. Light penetration of some hybrid rice as affected by sowing dates.

varieties under study on number of days from sowing up to MT, PI and HD. So GZ 6522 was the lowest Number of days from sowing up to MT, PI and HD. GZ 6903 variety gave the highest value of B.V.P. and P.S.P. therefore GZ 6903 high sensitive for light and temperature. It was high sensitive to different sowing dates. The current findings are in good harmony with those reported by Singh and Parsed (1999), Hari et al. (1999) and Pirdashfy et al. (2000).

Data in Table 2 revealed that April 20th resulted in the

highest number of tillers $/M^2$, plant height and root length at PI and HD stages. Difference among the four tested rice varieties was highly significant. H1 was superior to other verities under study with respect to number of tillers/ M^2 , and (plant height and root length) at PI and HD stages. However Root length at PI stage gave the highest value compared with root length at HD, which may be due to more activity of plant during first growth stage. Whereas June 1st gave the lowest value for all qualities under study.

Figure 1 indicated that H1 hybrid rice variety gave the lowest value of light pentration under the first date of sowing. While GZ6522 hybrid rice variety gave the highest value of light pentration at June 1st sowing date. This may be due to a higher leaf area index at first dates of sowing than latter dates of sowing. These results are in agreement with earlier reports of Yoshida and Parao (1976).

Data in Table 3 showed that April 20th offered higher LAI, but April 10th gave higher number of days up to PI and HD. While May 30th gave the highest value of light penetration and chlorophyll content. However H1 hybrid rice surpassed other varieties under study of LAI and chlorophyll content. While H2 gave the highest value of number of days up to PI and HD. The current findings are in good harmony with those reported by Song et al. (1990), Singh and Parsed (1999), Hari et al. (1999) and Pirdashfy et al. (2000).

The highest sink capacity and number of grains/ panicles was obtained from field sown on April 20th (Table 4). But it gave the lowest value in sterility %. While April

Characters Treatments	LAI	LP	Chlorophyll content		per of up to
				PI	HD
Sowing dates					
April 10 th	5.62	276	38.79	75	109
April 20 th	6.84	237	39.64	72	106
May 1 st	6.24	355	39.70	63	96
May 10 th	5.52	438	41.27	60	95
May 20 th	4.83	526	43.78	58	93
May 30 th	4.33	1478	44.50	55	90
LSD at 5%	0.28	70.00	1.56	1.76	2.19
CV	4.50	9.20	3.2	2.40	1.90
Rice varieties					
H1	5.98	474	42.28	64	98
H2	5.09	611	41.98	65	100
GZ 6522	5.46	553	39.98	59	93
GZ 6903	5.72	569	40.88	65	102
LSD at 5%	0.39	81.06	1.50	1.54	1.57
CV	6.90	14.15	3.6	2.40	1.60

Table 3. Effect of sowing dates and some hybrid verities on LAI, LP,

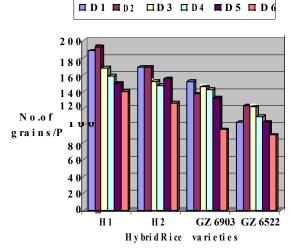
 Chlorophyll content and Number of days up to PI and HD.

Table 4. Sink capacity, Sterility %, Spikelets- leaf area ratio and Number of grains/ panicle as effected by sowing dates of some hybrid rice varieties.

Characters	Sink	Sterility %	Spikelets –leaf	Number of
Treatments	capacity		area ratio	grains / panicle
Sowing dates				
April 10 th	54	4.2	0.95	153
April 20 th	61	3.6	0.88	155
May 1 st	53	3.8	0.84	146
May 10 th	46	4.3	0.84	139
May 20 th	39	5.1	0.80	135
June 1 st	29	6.4	0.65	112
LSD at 5%	5.30	0.63	0.03	5.35
CV	9.6	11.5	10.6	5.00
Rice varieties				
H1	61	3.5	1.01	165
H2	51	3.9	0.89	152
GZ 6522	32	6.2	0.63	108
GZ 6903	43	4.7	0.89	134
LSD at 5%	4.13	0.58	0.10	9.83
CV	8.80	12.6	11.4	7.10

Sink capacity = (Number of spikelets/M2)*10

Sterility % = (Number of unfilled grains /Total of grins per panicle)*100


10th gave the highest value of spikelets –leaf area ratio. H1 gave the highest value of sink capacity, spikelets-leaf area- ratio and number of grains/panicles. On the other hand GZ6522 gave the lowest value for all previous quailties under study. Whoever the lowest sterility was obtainned from H1 hybrid rice. These data are in agreement

with those reported by Yoshida and Parao (1976) and El-Hity et al. (1987).

Numbers of grains/panicles were markedly influenced by different sowing dates (Figure 2): Found that First date of sowing at April 10th with H1 hybrid rice gave the highest value of number of grains/panicle. While June 1st

Characters	Panicle	1000-grain	Number 0f	Panicle	Grain yield
Treatments	length(cm)	weight (g)	panicles/ M ²	weight (g)	(T/h)
Sowing dates					
April 10 th	21.46	24.01	350	20.4	11.47
April 20"	22.42	27.62	394	21.6	12.44
May 1 st	21.22	26.37	363	20.9	11.51
May 10 ¹¹	20.30	25.93	340	20.5	8.28
May 20 th	20.20	25.08	298	18.6	6.13
May 30 th	18.63	19.98	250	18.0	5.33
LSD at 5%	0.89	1.11		1.19	1.58
CV	3.7	3.80		5.10	3.3
Rice varieties					
H1	21.16	25.74	365	21.7	9.84
H2	20.99	25.08	346	20.5	9.75
GZ 6522	20.01	23.94	294	17.6	8.38
GZ 6903	20.65	24.56	324	20.1	8.79
LSD at 5%	0.76	0.96		1.35	1.67
CV	3.60	3.90		6.70	4.00

Table 5. Effect of sowing dates and some hybrid rice varieties on Panicle length (cm), 1000-grain weight (g), Number of panicles/ M2, Panicle weight (g) and grain yield (T/h).

Figure 2. Number of grains / panicle of some hybrid rice as affected by sowing dates.

gave the lowest value of number of grains/panicle. These data are in agreement with those reported by RRTC (2002).

Planting rice latter in May 10^{III} resulted in reduction of yield parameters and that in April 20^{III} gave the highest value of panicle length (cm), 1000-grain weight (g), number of panicles /M2, panicle weight (g), and grain yield (Table 5). But no difference between April 10^{III}, April 20^{III} and May 1 was observed; therefore the best of time for

rice planting observed was that between, April 10th to

May 1st. While June 1st gave the lowest value for all

parameters under study including grain yield. This may be due to reduction in leaf area index, number of productive tillers, panicle weight and filling period and increase in sterility percentage. H1 hybrid rice variety surpassed other varieties of panicle length (cm), 1000-grain weight (g), panicle weight (g) and grain yield (T/h). These data are in agreement with those reported by Xu et al. (1997) and Sherief et al. (2000).

Abbreviations: MT, Maximum tillering; PI, panicle initiation; HD, heading dates; LAI, leaf area index; LP, Light penetration.

REFERENCES

- Khalifa AA (2005). Physiological behaviour of some rice cultivars under Different sowing dates and seedling age. The 11th Conference of Agronomy, Agron. Dept., Assiut Univ., Nov. 15-16: 285-295.
- El-Hity MA, El-Keredy MS, Abdel Hafez AG (1987).yield response of same rice varieties to different planting time. J. Agric. Res. Tanta Univ. 13(14): 1006-1014.
- Gomez KA, Gomez AA (1984). Statistical procedures for agricultural roses. 2nd Ed., John Wily & Sons.
- Hari OS, Katyal K, Dhiman SD, Om H (1999). Response of two rice (Oryza Sativa) hybrid to graded levels of nitrogen. Indian J. Agric. Sci. 70(3):140-142
- Šci. 70(3):140-142. Komatsu Y, Matsuo Y, Kamimura Y (1985). Analysis of introduced high yielding rice varieties. 7. Varietal characteristic in Akenohoshi on large vascular bundle in panicle inter-node. Jpn. J. Crop Sci. 54: 10–11.
- Penning de Vries FWT, Jesen DM, Ten Berge HFM, Bekema AM (1989). Simulation of ecophysiological processes of growth in several annual crops. IRRI. PUDOC. Wageningen, Netherlands.

Pirdashfy HZ,.Sarvestani T,Narsiri M, fallah V (2000). Effect of transplanting date on yield and yield components of some rice cultivars. Seed and plant 16:164-158.

Ritchie JT, Alocilja EC, Singh U, Uehera G (1989). IBSNAT and CE-

RES- Rice model in: Workshop on the Impact of weather Parameters

on growth and yield of rice. International Rice Research Institute, Los Banos. Philippines pp. 271-281.

- RRTC (2002).Rice research and training center report, Agronomy. Sakha. Kafr-El sheikh, Egypt.
- Sherief AE, El-Hinidi MH, Abd El-Rahman AA, Abdo GM (2000). Rice productivity as influenced by planting dates and seedling. Age J.Ages.J.Agric.sci. Mansoura Univ. 3: 1511-1521.
- Singh UP, Prasad A (1999). Response of promising spring sown rice (Oryza Sativa L,) varieties to sowing time and N levels under upland rained low-hill valley situation of latter Pradesh Annuals of Agric. Res. 20: 296-300.
- Song X, Agata W, kawamitsu Y (1990).Studies on dry matter and grain production of F1 hybrid rice in China. II. Characteristics of grain production Jpn. J. Crop Sci. 59:29-33.
- Toole OJC (1993). Ricemod: A physically based growth and yield model, IRPS, IRRI, and Manila, Philippines. No. 87. pp. 1-61.

- Toth S (1978): Rice yield response to sowing date and sowing rate. Novenytermeles, 27(1)65-75. (C.F. Field Crop Abst., 34(7): 5401, 1981).
- William JR, Jones CA, Kiniry JR, Spanel DA (1989). The EPIC growth model. Trans. ASAE. 32(2): 497-511.
- Xu Y, Ookawa T, Ishihara K (1997). Analysis of the dry matter production process and yield formation of the high-yielding rice cultivar Takanari, from 1991 to 1994. Jpn. J. Crop. Sci. 66: 42–50.
- Yoshida S, Parao FT (1976). Climatic influence on yield and yield components of lowland rice in the tropics. Pages 471-494 in Climate and rice international rice research Institute, Los Banos, Laguna. Philippines.