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Cynotilapia’s unicuspid teeth, a unique character used to delineate it from all other mbuna genera, 
leaves evolutionary biologists wondering which is the closest relative to this genus among mbuna 
cichlids. This genus has only two described species out of the 10-13 species/taxa, whereby the 
undescribed taxa are either known by their colouration or place where they occur. AFLP genetic marker 
was used to determine the phylogenetic position of Cynotilapia among the mbuna and also the genetic 
diversity within this genus. Nei’s genetic distance, frequency of polymorphic loci and average 
heterozygosity were used to unravel the genetic diversity. The neighbour-joining (NJ) dendrogram 
revealed that the genus Maylandia is the closest relative to Cynotilapia. Genetic distances were higher 
among all pairs of undescribed taxa than between the two species (Cynotilapia afra vs. C. axelrodi). 
Frequency of polymorphic loci and average heterozygosity were also higher within undescribed taxa 
than in two species. These results, coupled with already known phenotypic differences among these 
taxa (including colour, a crucial factor in speciation through sexual selection), do provide a strong base 
to taxonomists who can formally describe these taxa as species. The uncovered genetic differentiation 
is very important for conservation of this endemic fish fauna. 
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INTRODUCTION 

 
The most speciose fish family, Cichlidae, in east African 
Great Lakes has attracted biologists from all fields due to 
its fascinating adaptive radiation and explosive speciation. 
Speciation in these lakes (Malawi, Victoria and 
Tanganyika) has been very rapid considering their ages, 
especially for lakes Malawi and Victoria. Based on 
geological and palaeolimnological evidence, Lake Victoria 
basin is said to be ca. 400,000 years old (Johnson et al., 
1996, 2000; Talbot and Laerdal, 2000), but within such 
short timeframe, the lake is currently said  
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to harbour about 535 species (Genner et al., 2004) which 
are all believed to have descended from one common 
ancestor. And for Lake Malawi, both molecular and 
geological evidence indicate that colonization occurred 
between 500,000 and 2 million years before present 
(Meyer et al., 1990; Meyer, 1993; Johnson et al., 1996, 
2000; Sturmbauer et al., 2001). There seems to be some 
discrepancies in estimating the cichlid species richness 
currently found within this lake; for instance, 600, 659, 
800 and 850 were estimated by Genner et al. (2004), 
Turner et al. (2001), Snoeks (2000), and Konings (2001), 
respectively. Whatever the exact species number is, it is 
undeniable fact that Lake Malawi has the highest number 
of species than any other lake in the world. Considering 
such age evidence, it is undoubtedly that the cichlid 
species flocks in these two lakes represent the largest 



 
 
 

 

known recent adaptive radiations of animals ever known 
by human kind.  

A large group of Lake Malawi’s species flock is 
represented by the most colourful, rock-dwelling species 
locally known as “mbuna”. Almost all mbuna species are 
restricted to rocky habitats less than 40 m deep (Ribbink 
et al., 1983). The rapid mbuna and non-mbuna speciation 
has been attributed to a couple of hypotheses, of which 
the most dominating in literature are the two classical 
ones: allopatry (e.g. van Oppen et al., 1997; Arnegard et 
al., 1999; Markert et al., 1999; Rico and Turner, 2002) and 
sympatry through sexual selection (e.g. McKaye et al., 
1984; Turner and Burrows, 1995; Higashi et. al., 1999; 
Shaw et al., 2000) or natural selection (Dieckmann and 
Doebeli 1999; Kondrashov and Kondrashov, 1999). 
Sexual selection has accelerated the divergence of mate 
recognition systems, like colour, among mbuna 
populations and thus may account for rapid speciation. 
 

Cynotilapia, one of the 13 mbuna genera, is no 
exception of such factors enhancing its speciation. This 
genus is fascinating among the mbuna due to its unique 
unicuspid, conical shaped tooth form (Lewis et al., 1986; 
Konings, 1990, 2001). The unicuspid tooth form is the 
major character that taxonomists used to elevate this 
group into a distinct genus, and due to such tooth shape 
uniqueness, it is not clear as to which of the other mbuna 
genera is closely related to this genus. And secondly, 
Cynotilapia consists of about 10 to 13 species/taxa, only 
two of which are taxonomically described species 
(Cynotilapia afra and C. axelrodi). The rest are just 
recognized by either their colouration (e.g. C. sp. “black 
dorsal”) or the place where they endemically occur (e.g. 
C. sp. “chinyankwazi” or C. sp. “maleri”, named after 
Chinyankwazi and Maleri Islands, respectively). 
Therefore, due to lack of molecular data evidence, it is 
not clear how differentiated are these undescribed taxa 
and if at all they are differentiated so much to be 
considered separate species or just allopatric populations 
of the two described species. These two factors make 
this genus an ideal material to elucidate its phylogenetic 
relationships with other mbuna and also determine 
intrageneric genetic diversity.  

Amplified fragment length polymorphism (AFLP, Vos et 
al., 1995), was used to determine the phylogenetic 
position and genetic diversity. AFLP is one of the most 
reliable and promising DNA fingerprinting techniques 
producing hundreds of informative polymerase chain 
reaction (PCR)-based genetic markers that provide wide 
multi-locus genome screening (Bonin et al., 2005). AFLP 
nuclear markers have proven to be valuable tools in 
taxonomic and phylogenetic inferences (e.g. Albertson et 
al., 1999; Giannasi et al., 2001; Buntjer et al., 2002; 
Ogden and Thorpe, 2002; Seehausen et al., 2003), 
genetic diversity assessment (Travis et al., 1996; Seki et 
al., 1999; Ajmone-Marsan et al., 2001, 2002), 
investigations of population structuring and estimation of 

 
 
 

 

gene flow (Jorde et al., 1999; Dearborn et al., 2003). 
Unlike other markers, reproducibility of AFLPs is usually 
higher than 95% (Ajmone-Marsan et al., 2001; Bagley et 
al., 2001). The PCR-based AFLP markers are amenable 
to automation for high-throughput genotyping at relatively 
low cost and, being anonymous, do not require prior 
sequence information. These are some of the factors that 
make AFLPs most favoured DNA fingerprinting method 
among molecular biologists.  

Therefore, the objectives of this study were to utilize 
AFLPs in order to 1) determine the phylogenetic position 
of Cynotilapia genus among the mbuna cichlids, and 2) 
evaluate the genetic diversity among Cynotilapia 

species/taxa. 
 

 
Table 1. Samples used, collection sites and specimen number (n). 
For Cynotilapia specie/taxa, number in parentheses represents 
specimens used for genetic diversity experiment. Locations are 
shown in Figure 1. 

 

Taxa Locality n 

Labeotropheus fuelleborni, Lfue West Thumbi Island 2 
L. treawavasae, Ltre ” 2 
Petrotilapia nigra, Pnig ” 2 
P. genalutea, Pgen ” 1 
P. sp. “mumbo blue”, P ”mbl” ” 1 
Tropheops   sp.   “red   cheek”, ” 2 
T ”rch”   

T. sp. “orange chest”, T ”orc” ” 2 
Maylandia zebra, Mzeb ” 2 
Dimidiochromis kiwinge Malembo 1 
Tilapia rendalli ” 1 
Cynotilapia afra, Cafr West Thumbi Island 2 (12) 
C. axelrodi, Caxe Chadagha point 3 (10) 
C. sp. “maleri”, C “mal” Maleri Island 3 (10) 
C. sp. “black dorsal”, C “bdo” Mbenji Island 2 (3) 
C. sp. “black eastern”, C “bea” Gome point 2 (6) 
C. sp. “chinyamwezi”, C “cmz” Chinyamwezi Island 2 (6) 
C. sp. “chinyankwazi”, C “cnz” Chinyankwazi 2 (5) 

 Island  

MATERIALS AND METHODS   

Sample collection   
 
Species/taxa collected, locality and number of specimens, for both 
the phylogenetic and genetic diversity experiments are shown in 
Table I, and the exact localities in Lake Malawi are shown in Figure  
1. In July/August 2004, fish were captured by leading them into 
microfilament nets with the aid of SCUBA, except for Tilapia rendalli 
and Dimidiochromis kiwinge which were obtained from local 
fishermen. Tilapia rendalli was used as an outgroup while D. 
kiwinge represented non-mbuna haplochromine cichlid. Since most 
of our collection sites are within Lake Malawi National Park, only a 

portion of the unpaired fins (ca. 1 cm
2
) was removed from each 

individual and preserved in 100% ethanol, then the fish was 
immediately released at the collection site. Preserved finclips were 
transported to Kochi University, Japan for genetic analyses. DNA 
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Figure 1. Map of Lake Malawi showing sampling localities. 

 
 
 
 
was extracted from the fin tissues by the standard proteinase-K 

digestion, phenol-chloroform extraction protocol. 

 

Phylogenetic relationships experiment 
 
The AFLP procedure was performed following the AFLP Plant 
Mapping Kit of PE Applied Biosystems (Foster city, CA) with minor 
modifications. The genomic DNA was digested with two 
endonucleases, EcoRI (5 units) as the rare cutter and MseI (1 unit) 
as frequent cutter (New England Biolaborataries). Double stranded 

 
 
 
 
 
synthetic adapters were ligated to sticky ends of the resultant 
fragments to serve as templates for the PCR primers. The 
restriction-ligation was carried out as single step by incubating the 
reaction mixture at 23°C for 10 h using the TaKaRa PCR Thermal 
Cycler (TaKaRa). Two rounds of PCR (Preselective and Selective, 
performed by GeneAmp PCR System 9700) using primers 
complimentary to the synthetic oligonucleotide adapter sequence 
amplified and labeled the fragments. First, the preselective 
amplicatification was done with one selective base on each primer 
(EcoRI+A and MseI+C) for 24 cycles set at 94°C denaturation (20 
s), 56°C annealing (30 s), and 72°C extension (2 min). The initial 



 
 
 

 
hold was at 72°C for 2 min and the final extension was at 60°C for 
30 min. The amplified product was diluted 10-fold in TE0.1 buffer 
and stored at 4°C since selective amplification was performed 
within a one month time frame. Then selective amplification was 
performed with an additional two-base extension using the following  
10 different primer combinations: E-AAG+M-CAG, E-ACA+M-CAG, 
E-AAC+M-CAG, E-AAG+M-CTT, E-ACA+M-CTT, E-AAC+M-CTT, 
E-AAG+M-CAT, E-ACA+M-CAT, E-AAG+M-CAA and E-ACA+M-
CAA. Selective amplifications were done according to the ABI 
protocol, and only EcoRI primers were 5 end-labeled with blue 
(EcoRI+ACA, 5-FAM), yellow (EcoRI+AAC, NED) and green 
(EcoRI+AAG, JOE ) fluorescent tag.  

One l of the selective amplified product was mixed with 9.5 l of 
deionized formamide and 0.5 l of GeneScan 500 ROX (Perkin-
Elmer Applied Biosystems, Foster city, CA) internal size standard. 
The samples were electrophoresed on a 16-capillary ABI 3100 
Genetic Analyzer (Perkin-Elmer Applied Biosystems, Foster city, 
CA). Raw fragment data were then collected with GeneScan 
analysis software version 3.7 (PE ABI), and the resulting GeneScan 
tabulated files were imported into MS-Excel. The AFLP fragments 
between 50 to 500 base pairs (bp) were manually scored for 
presence (1) or absence (0) and fragments were considered 
homologous if their difference was no more than 0.5 bp. The 0, 1 
coded raw data matrix was used to construct a neighbour-joining 
(NJ)-dendrogram from the mean character difference distance by 
using the neighbour-joining module in PAUP* 4.0 (Swofford, 2002). 

 

Genetic diversity experiment 
 
As indicated in Table 1, only Cynotilapia species/taxa were used in 
this experiment. Although Konings (2001) regarded populations from 
the Chinyamwezi and Chinyankwazi islands as one species (C. sp. 
“chinyankwazi”), we included both populations in this study in order 
to assess their genetic differentiation. Restriction-ligation of genomic 
DNA, preselective and selective amplifications were done as 
explained above with the only exception of primer combinations for 
selective amplification. The following five primer pairs were used for 
the selective amplification: E-AAG+M-CAG, E-ACA+M-CAG, E-
AAC+M-CAG, E-AAG+M-CAT and E-ACA+M-CAT.  

Using the 0, 1 coded binary matrix, genetic diversity among 
species/taxa was estimated by using the unbiased Nei’s genetic 
distance as recommended by Nei (1978) for a small number of 
individuals. In order to assess genetic variation within each taxa, we 
estimated average heterozygosity (H) and also frequency of 
polymorphic loci (f) . Frequency of polymorphic loci was calculated 
as f = Lp/L, where Lp = number of polymorphic loci and L = total 
number of loci. All these 3 parameters were calculated in 
POPGENE software version 1.32 (Yeh et al, 1997). 
 

 

RESULTS 

 

Phylogenetic relationships 

 

From the combined data of 10 primer combinations for all 
species/taxa, a total of 2068 DNA fragments were scored, 
out of which 1978 were polymorphic, thus representing 
95.6%. Although these primer pairs were chosen 
arbitrarily, some combinations showed the potential of 
revealing many characters than others, for instance, the 
best combination was E-ACA+M-CAG (minimum number 
of fragments scored = 60, maximum = 135, mean ± SE = 
98.9 ± 9.1, thus mean number of fragments per individual) 
and the least was E-AAC+M-CTT minimum number of 

 
 
 
 

 

fragments scored = 47, maximum = 74, mean ± SE = 
59.5 ± 5.4).  

The NJ dendrogram generated (Figure 2), which is 
robust as indicated by the high bootstrap values, revealed 
that, among the mbuna cichlids, the genus Maylandia is 
the closest relative of Cynotilapia (supported by a higher 
bootstrap value of 99%). The tree topology also indicated 
that Cynotilapia sp. “black eastern” is the basal taxon for 
all Cynotilapia species/basal taxon. Another interesting 
result worthy noting is the clustering of the Petrotilapia 
and Tropheops as sister genera (supported by a 59% 
bootstrap value). 
 

 

Genetic diversity 

 

The whole data set, with all five primer combinations, 
consisted of 993 characters of which 942 were 
polymorphic (94.9%). Genetic diversity among 
species/taxa as indicated by the unbiased Nei’s genetic 
distance (Table 2) shows that the smallest distance was 
between C. afra and C. axelrodi (D = 0.03) while the 
largest distance was between C. axelrodi and C. sp. 
“chinyamwezi” (D = 0.16). Overall, all pairwise genetic 
distances among undescribed taxa were larger than the 
distance between 2 taxonomically described species 
(Table 2).  

As for the genetic variation within each species/taxa, C. 
sp. “maleri” showed highest polymorphic loci frequency 
since 570 of the 681 scored were polymorphic (f) = 0.84, 
while 321 of the 608 fragments scored for C. axelrodi 
showed lowest polymorphic loci frequency (f) = 0.53 
(Table 3). Average heterozygosity was lowest in C. 
axelrodi (H) = 0.147 and highest in C. sp. “black eastern”  
(H) = 0.295. Both parameters, i.e. frequency of 
polymorphic loci and average heterozygosity, were 

mostly higher in undescribed taxa than in 2 described 

species (f 0.61 and H 0.228). 
 

 

DISCUSSION 

 

Utilization of AFLP nuclear markers in the present study 
has revealed the following: Cynotilapia is closely related 
to Maylandia while Tropheops is closely related to 
Petrotilapia and also that Cynotilapia sp. “black eastern” 
is the basal taxon for Cynotilapia species/taxa. And also 
AFLPs have revealed genetic differentiation among 
Cynotilapia species/taxa, thus supporting the present 
status of regarding the undescribed taxa as distinct 
species (see Konings, 1990, 2001). 
 

 

Phylogenetic relationships 

 

The revelation that the genus Cynotilapia is closely 

related the genus Maylandia is consistent with what 
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Figure 2. The dendrogram indicating the phylogenetic position of the genus Cynotilapia among Lake Malawi’s mbuna cichlids 

as estimated by the NJ algorithm (PAUP* 4.0). Bootstrap values are shown above branches from 1000 replicates. The scale 

bar indicates 10% character difference. Species/taxa abbreviations are defined in Table 1. 
 

 
Table 2. The unbiased Nei’s genetic distances among taxa (Nei, 1978) showing genetic distances among Cynotilapia 

species/taxa. Abbreviations are defined in Table 1. 
 

Taxa Cafr Caxe C ”mal” C “bdo” C “cnz” C “bea” 

Caxe 0.03      

C “mal” 0.06 0.14     

C “bdo” 0.06 0.07 0.05    

C “cnz” 0.05 0.06 0.04 0.05   

C “bea” 0.11 0.14 0.07 0.10 0.10  

C “cmz” 0.14 0.16 0.08 0.10 0.11 0.08 



 
 
 

 
Table 3. Genetic diversity within Cynotilapia species/taxa as revealed by frequencies of 

polymorphic loci (f) and average heterozygosity (H). 
 

Taxa No. of variable No. of fixed f H 
 bands bands   

C. afra 437 217 0.67 0.188 

C. axelrodi 321 287 0.53 0.147 

C. sp. “maleri” 570 111 0.84 0.273 

C. sp. “black dorsal” 314 205 0.61 0.228 

C.sp.“chinyankhwazi” 447 183 0.71 0.248 

C. sp. “black eastern” 467 107 0.81 0.295 

C. sp. “chinyamwezi” 427 124 0.78 0.289 
 
 

 

previous researchers (e.g. Fryer and Iles, 1972; Konings, 
1990, 2001) had hypothesized, basing their conclusion on 
the phenotypic (colour to be specific) resemblance of 
these two genera. Such concordance, to some extent, 
suggests that colour is more reliable in determining 
closely related genera/species than tooth shape. 
However, such conclusion has limitations since both 
characters, colour and tooth shape, have shown to evolve 
independently multiple times, even in so distantly related 
species/genera. For instance, similar colouration between 
Lake Malawi’s Melanochromis genus and Lake 
Tanganyika’s Julidochromis does not imply that these two 
genera are closely related but rather same colour pattern 
evolved in parallel (Fryer and Iles, 1972; Kocher et al., 
1993). And also similar tooth shapes have been shown to 
evolve in distantly related lineages, and vice versa, of 
Lake Tanganyika’s Eretmodini cichlids (see Ruber et al., 
1999). With such parallel/convergent evolution in these 
two characters, which are usually taxonomically utilized, it 
implies that in order to determine species/genera 
phylogenetic relationships, molecular data evidence is 
also required.  

Again, the finding that Petrotilapia is sister genera to 
Tropheops is surprisingly interesting because we 
expected Tropheops to be closer to Maylandia (both once 
lumped in the Pseudotropheus genus). From the genus 
Pseudotropheus, Meyer and Foerster (1984) separated 
the then Pseudotropheus zebra complex and described it 
as a distinct genus now known as Maylandia, and at the 
same time, Trewavas (1984) proposed Tropheops to be a 
subgenus of Pseudotropheus considering its 
distinguished steep sloping snout and a small ventrally 
placed mouth. So the genus Pseudotropheus was split 
into three groups, viz; genus Maylandia, genus 
Pseudotropheus and its subgenus Tropheops. However, 
recently other researchers (see Konings, 2001) have 
advocated the elevation of the subgenus Tropheops into 
a distinct genus, and since then, Tropheops has been 
treated as a distinct genus (see Allender et al., 2003; 
Won et al., 2005). So our results, indicating the 
occupation of distinct position (not even closer to 
Maylandia) in our phylogenetic tree, corroborate the idea 

 
 

 

advocated by Konings (2001) that Tropheops be 
regarded a genus on its own.  

And finally, our study does not support the suggestion 
by Konings (2001) that Cynotilapia sp. “black eastern” is 
closely related to C. sp. “black dorsal”, rather C. sp. 
“black dorsal” is sister taxa to C. sp. “chinyankwazi” and 
C. sp. “chinyamwezi” (see Figure 2). Konings suggested 
the close relationship of these two taxa based on their 
similarity in black colouration, but as stated above, similar 
colour patterns are prone to parallel evolution and do not 
always reflect close relationship. 
 

 

Genetic diversity and conservation implications 

 

The larger Nei’s genetic distances revealed in this study 
among undescribed taxa (together with higher frequency 
of polymorphic genes and average heterozygosity) than 
between two taxonomically recognized species, just 
support that these taxa maybe distinct species as 
Konings (1990, 2001) had treated them. Due to a bias 
towards the use of microsatellite markers (e.g. van 
Oppen et. al., 1997; Arnegard et al., 1999, Markert et. al., 
1999; Shaw et al., 2000; Rico and Turner, 2002) than 
AFLPs to assess genetic diversity in these cichlids, 
leaves us with no other studies to compare our results 
with. However, when genetic distance was calculated 
between other well known mbuna species, (e.g. 
Labeotropheus fuelleborni vs. L. trewavasae, D was 
0.079 whereas D was 0.124 for Petrotilapia nigra vs. P. 
genalutea), the magnitude of such distances is similar to 
what we have found among Cynotilapia species/taxa. 
Such comparable distances just emphasize that these 
taxa have differentiated so much to be recognized as 
distinct species.  

Another important finding is the genetic diversity 
unraveled between Cynotilapia sp. “chinyamwezi” and C. 

sp. “chinyankwazi”, in which the former is regarded as just 
a population of the later. The genetic distance between 
these two (D = 0.11) is even one of the largest among 
Cynotilapia species/taxa. With such differentiation, it can 

be suggested that there is little or no gene flow 



 
 
 

 

between these two and they can as well be regarded 
distinct species. The genetic differentiation revealed 
between these two taxa (which occupy islands 5 km apart, 
separated by sandy beach), is not surprising since mbuna 
cichlids are known to be habitat specialists and lack 
dispersal capabilities over sand beaches or deep waters 
(see Fryer and Iles, 1972; van Oppen et. al., 1997; 
Arnegard et al., 1999, Markert et. al., 1999; Rico and 
Turner, 2002). Rico and Turner (2002) even uncovered a 
significant genetic differentiation between taxa that were 
separated by a 35 m of habitat discontinuity. Konings 
(2001) reported that these two taxa are morphologically 
indistinguishable, but we suggest that a better quantitative 
approach should be utilized to explore their  
morphological similarity/variation. Geometric 
morphometrics can be used to determine morphological 
divergence due to its robustness in revealing 
morphological differences not discernible through 
qualitative approaches (e.g. Kassam et al., 2003 a,b, 
2004 a,b). 

Assessing genetic diversity, through average 
heterozygosity and frequency of polymoprhic genes, 
seems a reasonable approach since these two 
parameters are the raw materials for natural selection and 
may allow species to persist or evolve (Sterns, 1992). The 
genetic diversity revealed in this study within the 
undescribed taxa implies that these taxa can withstand 
future environmental extremes and thus avoid instant 
extinction. So in conclusion, we propose that allopatric 
speciation is the plausible mechanism that has led to 
Cynotilapia’s speciation, especially among the taxa 
included in this study since they are all spatially separated 
with barriers (e.g. sandy beaches or deep waters) in 
between them, limiting gene flow and thus enhance rapid 
speciation among the taxa.  

Cynotilapia’s preference for the open waters when 

feeding on zooplanton makes them more vulnerable to 
overfishing which is major problem in Lake Malawi. 
Although Cynotilapia is not caught as target genus, it is 
not uncommon to see large numbers of these species 
caught together with target genera such as 
Copadichromis (locally known as “utaka”, D. Kassam, 
personal observation). From a conservation perspective, 
the genetic diversity parameters uncovered through this 
study can serve as a basis to monitor these endemic 
Cynotilapia taxa in order to detect if there is any future 
decrease in genetic diversity. Overfishing may lead to 
reduction in population size which subsequently results 
into reduced heterozygosity due to inbreeding depression. 
Therefore, close monitoring of these genetic diversity 
parameters is essential for the conservation and 
management of these precious endemic fish fauna. 
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