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Bananas and plantains (Musa sp.) are the most important staple food and source of carbohydrates in 
many countries of Africa. The production is often constrained by many pests and diseases. In order to 

augment conventional breeding and to avoid constraints imposed by some pests and pathogens, 

transgenic approaches are being considered. The development of transgenic Musa plants has been 

achieved recently using the microprojectile bombardment procedure or Agrobacterium-mediated 

transformation. The transgenic approach shows potential for the genetic improvement of the crop using 

a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, 
bacterial and viral diseases. This article discusses the applications of genetic engineering for the 

enhancement of Musa production. 
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INTRODUCTION 

 
Bananas and plantains (Musa sp.) are a major staple 
food, supplying up to 25% of the carbohydrates for 
approximately 70 million people in Africa’s humid forest 
and mid-altitude regions (IITA, 1998). World Musa 
production is currently about 97 million tones annually 
(FAOSTAT, 2003), of which bananas cultivated for the 
export trade accounts for only 10%. Hence, bananas and 
plantains are important for food security in the humid 
tropics and provide income to the farmers. Many pests 
and diseases have significantly affected Musa cultivation. 
Black sigatoka (Mycosphaerella fijiensis ), Fusarium wilt 
(Fusarium oxysporum f. sp. cubense), bacterial wilts, 
viruses (causing Banana bunchy-top and Banana streak) 

and nematodes cause significant crop losses worldwide 
(Carlier et al., 2000; de Waele, 2000; Ploetz and Pegg, 
2000; Thwaites et al., 2000,). Development of disease-
resistant Musa by conventional breeding remains a 
difficult endeavor because of the long generation times, 
various levels of ploidy, sterility of most edible cultivars, 

 
 
 
 

 
and limited genetic variability. Therefore, genetic 

engineering may offer an alternative method for crop 

enhancement. This paper reviews the strategies for 

banana transformation to address the major constraints 

to banana and plantain production in Africa. 
 
 
GENETIC TRANSFORMATION OF MUSA 

 
Genetic transformation has become an important tool for 
crop improvement. Relative success in genetic 

engineering of bananas and plantains has been achieved 
recently, enabling the transfer of foreign genes into the 
plant cells. Genetic transformation using microprojectile 

bombardment of embryogenic cell suspensions is now 
routine (Becker et al., 2000; Cote et al, 1997; Sagi et al., 
1995). However, Agrobacterium-mediated transformation 

offers several advantages over direct gene transfer 

methodologies (particle bombardment, electroporation, 



 
 
 

 

etc), such as the possibility of transferring only one or few 
copies of DNA fragments carrying the genes of interest at 
higher efficiencies with lower cost and the transfer of very 
large DNA fragments with minimal rearrangement 
(Gheysen et al., 1998; Hansen and Wright, 1999; Shibata 
and Liu, 2000).  

Musa was generally regarded as recalcitrant for 
Agrobacterium-mediated transformation. Hernandez et al. 
(1999) has reported that A. tumefaciens is compatible 
with banana indicating the potential for genetic 
transformation by this means. The protocol has been 
developed for Agrobacterium-mediated transformation of 
embryogenic cell suspensions of the banana cultivar 
‘Rasthali’ (Ganapathi et al., 2001). At present most of the 
transformation protocols use cell suspensions. However, 
establishing cell suspensions is a lengthy process and 
cultivar dependent. The protocol has also been 
established using shoot tips from various cultivars of 
Musa (May et al., 1995; Tripathi et al., 2002). This 
technique is applicable to a wide range of Musa cultivars 
irrespective of ploidy or genotype (Tripathi et al., 2002). 
This process does not incorporate steps using 
disorganized cell cultures but uses micropropagation, 
which has the important advantage that it allows 
regeneration of homogeneous populations of plants in a 
short period of time. This procedure offers several 
potential advantages over the use of embryogenic cell 
suspensions (ECS) as it allows for rapid transformation of 
Musa species. 
 

 

RESISTANCE TO FUNGAL DISEASES 

 

Many fungal diseases have significantly affected Musa 
cultivation in Africa. Fusarium wilt caused by Fusarium 
oxysporum f. sp. cubense, has been reported to infect 
highland bananas in Uganda (Swennen and Vuylsteke, 
2001), but symptoms are atypical and severity is not well 
known. Black sigatoka, caused by the fungus 
Mycosphaerella fijiensis f. sp. cubense, is the most 
devastating disease of Musa in Africa. It causes 
significant reductions in leaf area, yield losses of 50% or 
more, premature ripening, and has a wider host range 
that includes the plantains, dessert and cooking bananas 
(Ploetz, 2001). Black sigatoka is controlled with frequent 
applications of fungicides and cultural practices, such as 
the removal of affected leaves, and adequate spacing of 
plants and efficient drainage within plantation (Ploetz, 
2001) . These control methods are either require high 
levels of expensive inputs or have a high labour 
requirement, which adds to the cost burden to the grower. 
 

The most attractive strategy for black sigatoka control 
in Musa is probably the production of disease resistant 

plants through the transgenic approach. These 

approaches could include the expression of genes 
encoding plant, fungal or bacterial hydrolytic enzymes 

 
 
 
 

 

(Lorito et al., 1998), genes encoding elicitors of defense 
response (Keller et al., 1999) and antimicrobial peptides 
(AMPs; Cary et al., 2000; Li et al., 2001). Antimicrobial 
peptides have a broad-spectrum antimicrobial activity 
against fungi as well as bacteria and most are non-toxic 
to plant and mammalian cells. Examples of AMPs are 
magainin from the African clawed frog (Bevins and 
Zasloff, 1990; Zasloff, 1987), cecropins from the giant silk 
moth (Boman and Hultmark, 1987), mammalian (Ganz 
and Lehrer, 1994) and plant defensins (Broekaert et al., 
1995). The cecropin (Alan and Earle, 2002; De Lucca et 
al., 1997) and its derivatives (D4E1: Cary et al., 2000; 
Rajasekaran et al., 2001) as well as its hybrids peptides 
with melittin (Osusky et al., 2000) have been found to 
inhibit the in vitro growth of several important fungal 

pathogens. The synthetic cecropin–melittin chimeric 
peptide provided field-level resistance against Verticillium 
dahliae in potato (Osusky et al., 2000).  

Similarly, magainin is effective against many plant 
pathogenic fungi (Kristyanne et al., 1997; Zasloff, 1987). 
Li et al. (2001) reported enhanced disease resistance in 
transgenic tobacco expressing Myp30, a magainin 
analogue. Another substitution analogue, MSI-99, when 
expressed in tobacco via chloroplast transformation 
conferred both in vitro and in planta resistance to plant 
pathogenic bacteria and fungi (De Gray et al., 2001). 
Recently, Chakrabarti et al. (2003) reported successful 
expression of this synthetic peptide and enhanced 
disease resistance in transgenic tobacco and banana. On 
the basis of their broad-spectrum activity against fungal 
pathogens, individual or combined expression of 
cecropin, magainin and their derivatives in Musa may 
result in increased resistance to several pathogens. 

There are many reports on the application of plant 
proteins with distinct antimicrobial activities (Broekaert et 
al., 1997; Yun et al., 1997). Thionins are highly abundant 
polypeptides with antifungal activities. Epple et al. (1997) 
observed that constitutive over expression of thionin in 
transgenic Arabidopsis resulted in enhanced resistance 
against F. oxysporum f. sp. matthiole. There are number 
of known plant defensins. The radish defensin Rs-AFP2 
conferred partial resistance to the tobacco pathogen 
Alternaria longipes (Terras et al., 1995) where as 
defensin from alfalfa (alfAFP) provided resistance to V. 
dahliae in potato in the greenhouse as well as in the field 
(Gao et al., 2000). Kanzanki et al. (2002) reported the 
overexpression of the WTI defensin from wasabi 
(Japanese horse radish) conferring enhanced resistance 
to blast fungus in transgenic rice.  

The AMPs of plant origin may be the potent candidates 
for fungal resistance in Musa as they have high in vitro 
activity to Mycospaerella fijiensis and Fusarium 
oxysporum f. sp. cubense and also they are non-toxic to 

human or banana cells. Several hundreds of transgenic 
lines of Musa especially plantains expressing AMPs have 
been developed at KULeuven (Remy, 2000), but none of 
these transgenic plants has been used in field trials due 



 
 
 

 

to the lack of biosafety guidelines in most tropical 

countries. 

 

RESISTANCE TO BACTERIAL DISEASES 

 

The livelihoods of millions of Ugandan farmers have been 
threatened by the current outbreak of bacterial wilt 
disease produced by infection with Xanthomonas 
campestris pv. musacearum (Xcm; Tushemereirwe et al., 
2002). Xcm infection can result in heavy banana crop 
production losses and affect banana productivity by not 
only causing wilting and death of young banana 
propagules, but also by severe crop yield reductions in 
mother crop and subsequent ratoon plant production 
cycles. Xcm is gradually spreading in East Africa and if 
unchecked could result in massive losses. Studies in 
Uganda show that the disease attacks all varieties of 
banana, locally known as matooke, a staple food in 
Uganda and parts of Kenya and Tanzania.  

To date, no banana germplasm exhibiting resistance to 
the disease has been identified. Use of genetic 
transformation technology with bactericidal transgenes 
encoding for peptides such as cecropins and lysozyme, 
may offer an alternative solution to these problems. 
Native, mutant and synthetic cecropins are active against 
a wide range of plant pathogenic bacteria including 
several Xc pathovars whereas they exert no toxicity at 
bactericidal concentration to cultured cells or protoplasts 
of several plant species (Kaduno-Okuda et al., 1995; 
Nordeen et al., 1992; Rajasekaran et al., 2001). 
Therefore, cecropins are considered as potential 
candidates to protect plants against bacterial pathogens. 
Transgenic tobacco plants expressing cecropins have 
increased resistance to Pseudomonas syringae pv. 
tabaci, the cause of tobacco wildfire (Huang et al., 1997).  

Another antibacterial protein is lysozyme, either from 
bacteriophage, hen eggs or bovine. The lysozyme attacks 
the murein layer of bacterial peptidoglycan resulting in 
cell wall weakening and eventually leading to lysis of both 
Gram-negative and Gram-positive bacteria. The 
lysozyme genes have been used to confer resistance 
against plant pathogenic bacteria in transgenic tobacco 
plants (Trudel et al., 1995). T4L, from the T4-
bacteriophage, also has been reported to enhance 
resistance of transgenic potato against Erwinia 
carotovora, which causes bacterial soft rot (Düring et al., 
1993). Transgenic apple plants with the T4L gene 
showed significant resistance to fire blight infection (Ko, 
1999). Human lysozyme transgenes have conferred 
disease resistance in tobacco through inhibition of fungal 
and bacterial growth, suggesting the possible use of the 
human lysozyme gene for controlling plant disease 
(Nakajima et al., 1997). There is evidence of efficacy of 
bovine lysozyme isozyme c2 (BVLZ) transgene against a 
variety of Xanthomonas campestris strains in both 
monocotyledon and dicotyledon crops including tomato, 

 
 
 
 

 

tobacco, rice and potato (Mirkov and Fitzmaurice, 1995). 

Since this bactericidal transgene has been shown to 

function in monocot, has clear efficacy against at least 
several strains of X. campestris, and has been 

demonstrated to be a suitable nontoxic food preservative 

and bactericidal agent, its availability and usefulness as a 
transgene for resistance to X. campestris in Musa has a 

high probability of success. 
 
 
RESISTANCE TO VIRAL DISEASES 

 

Banana bunchy top, caused by Banana bunchy top virus 
(BBTV), genus Nanavirus is one of the most threatening 
diseases in the world, as infected plants do not produce 
fruit. So far, only a few areas are affected in Africa 
(Swennen and Vuylsteke, 2001). Banana streak virus 
(BSV), genus Badnavirus has however had a major 
impact on banana and plantain production in Africa 
(Swennen and Vuylsteke, 2001). BSV infection induces 
yield losses and restricts movement of improved 
germplasm (due to quarantine restrictions), particularly in 
sub-Saharan Africa. Recent reports indicate that BSV 
infection may arise from the activation of viral sequences 
that are integrated into the Musa genome (Geering et al., 
2001; Harper et al., 1999; Ndowora et al., 1999). Tissue 
culture and hybridization through conventional breeding 
may be triggers for the activation of the integrant to 
produce BSV infection (Delanoy et al., 2003). This 
problem of virus activation suggests that traditional 
techniques for virus eradication, such as meristem tip 
culture, are not appropriate because these treatments 
would merely activate the integrated BSV sequences. 
Recently, Helliot et al. (2003) have reported that the anti-
retroviral and anti-hepadnavirus molecules, adefovir,  
tenofovir and 9-(2-phosphonomethoxyethyl)-2,6-
diaminopurine (PMEDAP), efficiently eradicate the 
episomal form of Banana streak virus (BSV) from banana 
plants. 

Unfortunately, there appear to be no strategies to 
generate high-level resistance to the plant dsDNA or  
pararetroviruses, including the badnaviruses. 
Researchers at International Institute of Tropical 
Agriculture (IITA), Nigeria in collaboration with John Innes 
Centre (JIC), UK, are attempting to generate transgenic 
plants resistant to BSV (including expression of 
integrated sequences) based on the novel approach of 
gene silencing. This involves preprogramming plant cells 
to specifically degrade viral sequences that are 
homologous to the expressed transgene. 
 
 

RESISTANCE TO NEMATODES 

 

Nematodes are recognized as severe production 

constraints to bananas and plantains (Gowen and 

Queneherve, 1990), with losses due to nematodes 



 
 
 

 

estimated at about 20% worldwide (Sasser and 
Freckman, 1987). Locally however, losses of 40% or 
greater can frequently occur, particularly in areas prone 
to tropical storms due to toppling as a result of wind 
damage on affected plants. Nematode management in 
bananas and plantains is mainly based on crop rotation 
and chemical control (Gowen and Queneherve, 1990). 
However, crop rotation is not often practiced and use of 
nematicides is often not practical or affordable to 
subsistence farmers or is environmentally unacceptable. 
There is evidence that nematode resistance and 
tolerance sources, though limited, are present in the 
Musa gene pool (Pinochet, 1996). Some resistance has 
been identified against the most damaging nematode 
species, the burrowing nematode (Radopholus similis), 
but this needs to be combined with consumer acceptable 
traits. However, Pratylenchus sp. causes more losses 
than R. similis. Furthermore, several species of 
nematodes are often present together, necessitating a 
broad spectrum resistance in order to reduce these 
losses significantly.  

There are several possible approaches for developing 

transgenic plants with improved nematode resistance. The 

use of proteinase inhibitors (PIs), as nematode antifeedants, 

is an important element of natural plant defence strategies 

(Ryan, 1990). This approach offers prospects for novel plant 

resistance against nematodes and reduces use of 

nematicides. The potential of PIs for transgenic crop 

protection is enhanced by a lack of harmful effects when 

humans consume them in seeds such as rice and cowpea. 

Cysteine PIs (cystatins) are inhibitors of cysteine 

proteinases and have been isolated from seeds of a wide 

range of crop plants consumed by man including those of 

sunflower, cowpea, soybean, maize and rice (Atkinson et al., 

1995). Cysteine proteinases are not involved in mammalian 

digestion. Transgenic expression of PIs provides effective 

control of both cyst and root–knot nematodes. The cystatins 

Oc-I and an engineered variant Oc-I∆D86 was shown to 

mediate nematode resistance when expressed in tomato 

hairy root (Urwin et al., 1995), Arabidopsis plants (Urwin et 

al., 1997), rice (Vain et al., 1998) and pineapple (Urwin et 

al., 2000). The partial resistance (709%) was conferred in a 

small-scale potato field trial on a susceptible cultivar by 

expressing cystatins under control of the CaMV35S 

promoter (Urwin et al., 2001). There is no evidence that 

expression of cystatins impairs plant growth or yield in trials. 

The enhanced transgenic plant resistance to nematodes has 

been demonstrated by using dual proteinase inhibitor 

constructs (Urwin et al., 1998). Full resistance is achieved by 

pyramiding a cystatin with natural resistance genes (Urwin, 

2003). Since this nematicidal transgene not only has been 

shown to function in rice, which like Musa is a 

monocotyledon, and also has clear efficacy against a wide 

range of nematode species and has been consumed for 

years from foods such as seeds of rice and maize by human 

beings, its 

 
 
 
 

 

usefulness as a transgene for development of transgenic 
Musa for resistance to nematodes can be evaluated as 

having a high probability of success.  
The other strategies for nematode resistance include 

the use of natural resistance genes (R-genes), lectins 
and Bacillus thuringiensis (Bt) genes. Several R-genes 
are targeted against nematodes. The Hs1pro-1 from a 
wild species of beet confers resistance to the cyst 
nematode Heterodera schachlii (Cai et al., 1997). The Mi-
1.2 gene of tomato confers resistance against 
Meloidogyne species (Milligan et al., 1998). To date there 
has been no reports of Mi-1.2 being functional after 
transfer to a plant other than tomato (Hwang and 
Williamson, 2003).  

Some lectins such as snowdrop lectins (GNA) have 
biological activity against nematodes (Burrows et al., 
1998). But many lectins have toxic effects on insects and 
mammals (Pusztai et al., 1996). Concerns regarding 
toxicological safety may prove a substantial limitation to 
the future commercial development of lectins. Some Bt 
proteins are effective against saprophagous nematodes 
(Borgonie et al., 1996). The Cry5B protein is toxic to wild 
type C. elegans whereas some mutants of C. elegans are 
resistant to it but susceptible to Cry6A toxin (Marroquin et 
al., 2000). The approach using Cry genes has potential 
for plant nematode control (Wei et al., 2003). 
 
 

BIOSAFETY 

 

New technologies always have risks that demand careful 
consideration in advance of wide scale adoption in the 
field. Biosafety measures are necessary as a matter of 
sound public policy. There are two main concerns: 
environmental effects and human health. Functioning 
biosafety systems are required to ensure the safe 
application of GM crops and equitable access to benefits 
by all sectors of communities. Many African countries 
have made impressive progress in biotechnology and 
biosafety (Zidenga, 2003). To implement a national 
biosafety system, it is important for countries to identify 
the goals and objectives of their system and the existing 
context for biotechnology and biosafety oversight. Along 
with the development of biosafety frameworks in Africa, 
there is a greater need to improve public understanding 
of biotechnology. The biosafety framework must not be a 
means to deprive Africa of a promising technology, but a 
way of ensuring safe application of transgenic crops. 
 

 

CONCLUSIONS 

 

This review describes the enormous potential for genetic 

manipulation of Musa species for disease and pest 

resistance using the existing transformation systems. The 

use of appropriate constructs may allow the production of 

nematode, fungus, bacterial and virus-resistant plants in 



 
 
 

 

a significantly shorter period of time than using 

conventional breeding, especially if several traits can be 

introduced at the same time. It may also be possible to 

incorporate other characteristics such as drought 

tolerance, thus extending the geographic spread of 
banana and plantain production, and thus contributing 

significantly to food security and poverty alleviation in 

Africa. 
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