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In this review, the recent progress on genetic transformation of forest trees were discussed. Its 

described also, different applications of genetic engineering for improving forest trees or 

understanding the mechanisms governing genes expression in woody plants. 
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INTRODUCTION 

 
Forest species predominate temperate and equatorial 
zones and the wood produced by trees is the most 
abundant biological material on the earth’s surface 
(Gammie, 1981). Wood provides fuel for most of the 
population of the world particularly in the developing 
countries, and wood is a leading industrial raw material. 
Despite its economic importance, the production of wood 
is under the threat of population growth, desertification, 
industries development and attack by many parasites. 
The classical techniques such as crossing, sexual and 
somatic hybridization, and breeding give a genetic blind 
mixture. These techniques are limited by the sterility of 
the descents, the genetic barrier between species and 
the long cycle for certain trees (for review see Sederoff, 
1995). Now this genetic barrier can be overcome by 
introducing one or few well defined new characteristics 
without affecting the global architecture and the plant 
phenotype. Presently, only genetic transformation 
technology offers this possibility. Genetic transformation 
can be defined as a controlled introduction of exogenous 
genetic material into the nuclear or cytoplasmic genome 
of an organism in stable and inheritable manner.  

This review lists the main genes introduced in forest 

trees species as well as the use of genetic transformation 

for studying genes expression in woody plants. 

 
 
 
 

 
GENETIC TRANSFORMATION OF FOREST TREES 

FOR SELECTED TRAITS 
 
Disease resistances 

 
Forest trees can be attacked by several diseases 
including those caused by white pine blister rust 
(Cronartium ribicola), Dutch elm disease (Ceratocystis 
ulmi), or chestnut blight (Endothia parasitica). Insect 

pests, whether generally endemic, such as Southern pine 
bark beetle (Dendroctonus frontalis), or epidemic, such 
as gypsy moth (Lymantria dispar), are serious concern in 
forest ecology and management. These parasites cause 
much damages reducing forest tree products around the 
world. Genetic transformation using gene coding for Bt or 
proteinase inhibitors could lead to reduced damage and 
chemicals usage in the environment. Bt toxins bind to the 
epithelial glycoproteins of the intestine of insects, 
especially the midgut, and cause fatal leakage of fluids 
between the intestine and the hemocoel (Höfte and 
Whiteley, 1989). The most easily manipulated genotype 
of the pine trees, the hybrid Populus ( Populus alba X 
Populus grandidentata) and Larch were transformed by 
35S-Bt (modified endotoxin gene from Bacillus 
thuringiensis). One of the regenerated plants was highly 



 
 
 

 

resistant to feeding of two lepidopteran pests, the forest 
tent caterpillar (Malacosoma disstria) and the gypsy moth 
(L. dispar) (Schuler et al., 1998). For forest trees, the 

introduction of gene coding for antimicrobial and 
antifungal proteins is in the early stage of development. 
Clear results have only been obtained with antifungal 
proteins by introducing wheat oxalate oxidase gene in 
poplar but the test showed that the trees are not 
completely resistant against the disease (Liang et al., 
2001). 
 
 

Herbicide resistance 

 

The first report on genetic transformation of forest trees 
was achieved by Fillatti et al. (1987) who introduced the 
aroA gene in the poplar by using the wild Agrobacterium 
tumefaciens strain C58/587/85. The aroA gene codes for 

5-enolpyruvylshikimate synthase that is active in the 
synthesis of aromatic amino acids. Transformation was 
confirmed by Southern and Western blotting, and the 
transformed poplar were resistant to glyphosate at levels 
of 0.07 kg/ha (Fillatti et al., 1988). Trees transformed with 
bar gene were also tolerant to herbicide (for review see 

Sederoff, 1995). 
 
 

Shorter cycle 

 

The long juvenile phase of forest trees is the main 
constraint for their genetic improvement and delays their 
exploitation or mature trait analyses. For these reasons, 
the introduction of genes encoding products controlling 
plant cycle will be very helpful for forest trees 
improvement. In order to achieve this objective, the 
homeotic gene LEAFY (LFY) from Arabidopsis thaliana, 
which encodes products governing early flowering 
initiation was introduced in aspen (Populus tremula X 
Populus tremuloides). The results showed that the 
flowering stage was induced after 7 months instead to 8-
20 years (Nilsson and Weigel, 1997) but the expression 
pattern varied among the interspecific Populus hybrids 
(Martín-Trillo and Martínez-Zapater, 2002) suggesting 
that the mechanisms controlling the expression of the 
homeotic genes are conserved between crops and trees 
and open up the possibility to improve forest trees 
(Rottmann et al., 2000). Recent studies show that 
homologs to LFY gene, the PTFL gene from Populus is 
able to induce early flowering in poplar. 
 

 

Phytohormones level 
 

The objective to modify phytohormones level in forest 

trees was to increase tree size, biomass production or 

wood quality. Introduction of the GA 20-oxidase gene 

 
 

 
 

 

from Arabidopsis in hybrid aspen has resulted in fast 

growth in diameter and height, large leaves, more 
numerous and longer xylem fiber and increasing biomass 

(Eriksson et al., 2000). This gene could be used to 
increase biomass production in forest trees or the use of 

its antisense can reduce trees size, which makes for 
easier harvesting. In Walnut, the expression of chalcone 

synthase decreases flavonoids synthetis and enhances 
the production of adventitious roots (El Euch et al., 1998). 
 
 
Reduction of lignin 

 

Lignins, the second most abundant compound (15-35% 
of the dry wood) in the biosphere after cellulose, are 
formed in cell walls and between cells of woody tissue by 
polymerization of monomeric precursors such as sinapyl 
and coniferyl alcohols. Its extraction from the wood is a 
costly process for the paper industry and generates great 
quantities of chemical pollutants. Lignin has also been 
identified as a major component limiting forage 
digestibility and its genetic or biotechnological 
modification in pasture plants is a desirable goal in the 
development of new forages (Waston, 1990). For these 
reasons, most studies were focused on the biochemical 
pathways in lignin biosynthesis by isolating and 
characterizing several genes encoding enzymes which 
play a key role in monolignols synthesis. These enzymes 
are mainly O-methyltransferase (OMT), 4-coumarate-CoA 
ligase (4CL) and cinnamyl alcool deshydrogenase (CAD). 
OMT is the enzyme catalyzing methoxylation of lignin 
precursors to form sinapic and ferulic acids, which are 
reduced respectively to sinapoylCoA and feruloylCoA by 
4CL. CAD has been considered a key enzyme in the 
lignin biosynthesis because it catalyses the final step in 
the synthesis of the monolignols by converting the 
cinnamaldehydes to the corresponding alcohols. The 
genes encoding these enzymes have been isolated and 
characterized in different plant systems, allowing for the 
future modification lignin quality and quantity in forest 
trees. To achieve this objective the antisense of OMT 
gene under the control of the cauliflower mosaic virus 
35S promoter was introduced in Populus. The generated 
transgenic trees showed reduction of OMT activity, 
modification of lignin amount and composition (Van 
Doorsselaere et al., 1995; Jouanin et al., 2000). Recently, 
reduced lignin content was obtained by down regulation 
of 4CL or CAD. However, increase of cellulose content 
and alteration of hemicellulose composition were 
observed in transgenic trees expressing the antisense 
(Baucher et al., 1996; Hu et al., 1999). 
 

 

Nitrogen metabolism 

 

Nitrogen availability is one of the main constraints for 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Histochemical analysis of β-glucuronidase (GUS) 
activity under the control of plant hemoglobin promoters in 
transgenic nodules (A, C) and roots (D) of A. verticillata and 
C. glauca (B). Cross section of the nodules show P. 
andersonii activity in infected cells and pericycle (A) where 
GUS activity is visible in pink colour after dark-field 
micrograph. Lbc3 expression is confined to the infected cells  
(B) but T. tomentosa is expressed in the vascular bundle of 
longitudinal section of nodule lobes (C) and in the root tissues 
except the meristem region (D) (Diouf, 1996; Franche et al.,  
1998). E: Endodermis, ic: infected cells, m: meristerm, nic: 
noninfected cells, p: pericycle, vb: vascular bundle. Bars=200 

m. 

 
 
 

plant growth and limits production without fertilizer 
supplies. However, many genes encoding proteins 

playing a key role in nitrogen fixation and assimilation 

have been isolated and characterized. One of these, the 

gene encoding glutamine synthetase under the control of 

35S promoter was introduced in poplar. The generated 

transgenic trees showed increased protein content and 
better growth (Gallardo et al., 1999). 

 
 
 

 

GENETIC TRANSFORMATION OF 

FOREST TREES FOR STUDYING GENES 

EXPRESSION 
 

Expression of hemoglobin genes 
 

Hemoglobin is present in the nitrogen fixing 
nodules of both legumes and nonlegumes 
such as Paprasponia andersonii (Ulmaceae) 
(For review see Appleby, 1992) and 
Casuarina glauca (For review see Appleby, 
1992; Jacobsen-Lyon et al., 1995). Its role is 
to transport oxygen and ensure free oxygen 
at a low concentration in an adequate level 
for symbiotical bacteria respiration without 
damaging the oxygen-sensitive nitrogenase 
present in the bacteroids or Frankia 
encapsulated within the nodule. A 
nonsymbiotic hemoglobin gene have also 
been identified in many plants such as wheat, 
maize, rice (Taylor et al., 1994), A. thalianna 
(Trevaskis et al., 1997), Trema tomentosa 
(Ulmaceae) (Bogusz et al., 1988), 
Physcomitrella patens (Arredondo-Peter et 
al., 2001) and tomato (Wang et al., 2003). 
The introduction of these symbiotic or 
nonsymbiotic hemoglobin genes in 
transgenic plants has important role for a 
better understanding their regulation, spatio-
temporal expression and evolution. To 
investigate this phenomenon, different 
techniques of transformation were used in 
forest trees. These techniques have been 
developed in two actinorhizal trees in the 
Casuarinaceae family, C. glauca (Diouf et al., 
1995) and Allocasuarina verticillata (Franche 
et al., 1997). To further investigate the 
evolution of plant hemoglobins, chemeric 
genes consisting of the promoter region from 
the soybean (lbc3), the P. andersonii, and the 
T. tomentosa hemoglobin genes linked to the 
coding region of the reporter gus (uidA) 
encoding β-glucuronidase (GUS) were 
introduced into C. glauca and A. verticillata. 
The fluorimetric assays in various organs 
showed that the expression of soybean and 
P. andersonii promoters is active in the 
nodule. In contrast, the expression of T.  

tomentosa hemoglobin gene promoter is highest in roots. 
The histochemical analyses showed that the expression 
of symbiotic genes (soybean and P. andersonii) is mainly 
confined in the infected cells of the nodules of C. glauca 
and A. verticillata like in legume plants (Figures 1A and 
B). The expression of T. tomentosa promoter is restricted 

in the vascular bundle of the nodule (Figure 1C) or in all 
root tissues except the meristem region (Figure 1D). 



 
 
 

 

These results suggest that the mechanisms governing 

the expression of these genes are conserved between 
legumes, Casuarinaceae and Ulmaceae, indicating a 

single origin for the predisposition to form symbiotic 

nodules and a close relationship of hemoglobin genes in 
different plants, which are phylogeneticaly distant (Diouf, 

1996; Franche et al., 1998). 
 
 

Expression of inducible genes 

 

A chemeric gene consisting of the 2.8 kb bspA (bark 
storage protein) promoter fused to the coding region of β-
glucuronidase gene was transferred into Populus. The 
transformed plants showed short day and nitrogen 
inducibility, and the GUS activity was localized to the bark 
(primary and secondary phloem, and cortex) and xylem 
rays. These studies showed that the short day and 
nitrogen inducible elements are separable (Zhu and 
Coleman, 2001). In contrast, the expression of win3 
gene, is localized in storage tissue of the hybrid poplar P. 
trichocarpa x P. deltoids and this gene possesses an 
element of 1.5 kb in the promoter region inducible by 
wounding (Hollick and Gordon, 1995b). Genetic 
transformation of forest trees allows also to show that the 
genes encoding CAD, PAL (phenylalanin ammonialyase) 
and Dc8 are inducible respectively by ozone and 
abscissic acid (Galliano et al., 1993; for review see 
Sederoff, 1995). Several promoters of the genes 
encoding enzymes for abscissic acid and auxin synthesis 
from soybean, Em from maize, Rubisco from Arabidopsis, 
show activity in conifers (for review see Sederoff, 1995). 
Recent studies have reported that Em is induced by 

CnABI3 in presence of abscissic acid. It was also 
reported that expression of CnABI3 gene decrease during 
dormancy breakage. Therefore, CnABI3 plays an 
important role in dormancy process (Zeng et al., 2003). 
The pin2 gene coding for potato proteinase inhibitor is 

one of the best-characterized plant defense genes, and 
its product inhibits animal digestive enzymes (Ryan, 
1990). This gene is inducible in potato by wounding 
caused by insects. The pin2 gene promoter from potato 
was fused to the coding region of cat (chloramphenicol 
aminotransferase) gene and introduced into the hybrid 
poplar ( P. alba x P. grandidentata) genome, and it 
retained the inducibility by wound (Klopfenstein et al., 
1991). 
 
 
Expression of other heterologous genes 

 

Transient expression of the promoter of the genes 

encoding phosphoenolpyruvate carboxylase from 

soybean, ubiquitin from Arabidopsis, alcohol 

deshydrogenase from corn, have been tested in conifers 

(for review see Sederoff, 1995). In contrast, the 

 
 
 
 

 

promoter of the gene encoding ATHB13, a transcription 
factor identified in A. thaliana, which belongs to the family 

of homeodomain leucine zipper (HDZip) was tested in 
hybrid aspen (P. tremula P. tremuloides). Histological 

analyses showed that the expression of these genes is 
localized in the petioles of leaves like in Arabidopsis. 

These results indicate that the transacting factors 
governing the expression of this gene are conserved 
between these plants (Hanson et al., 2002). 
 
 
Foreign genes encoding detoxifying proteins 

 

The exposure to environment stress caused by light, 
drought, ozone, herbicides, wounding, cold, nutrient 
deficiency, pathogens or sulfur dioxide are responsible for 
the formation of different xenobiotics such as active 
oxygen, superoxide radicals, and hydrogen peroxide in 
the plant cells. These xenobiotics are mainly detoxified by 
glutathione, which is synthesized by two main enzymes, 
γ-glutamylcysteine synthetase and glutathione 
synthetase. Overexpression of γ-glutamylcysteine 
synthetase gene in the cytosol or in the chloroplast 
increase foliar and root glutathione concentration in 
transgenic poplar (Noctor et al., 1996, 1998a; Strohm et 
al., 2002) and reduces the negative effect resulting from 
higher uptake of candmium (Rennenberg and Will, 2000). 
Transgenic trees can also be used to remove 
contaminants from soil or water, and therefore can be 
applied to solve pollution. In this case the overexpression 
of the bacterial mercuric reductase in yellow poplar 
induces resistance to toxic level of mercuric ion (Rugh et 
al., 1998). 
 

 

CONCLUSION 

 

Despite the recent progress achieved in genetic 
transformation of plants, foreign gene transfer in forest 
trees is mainly limited by two constraints. The first is 
related to transformation because only a few dicotyledons 
and conifers are sensible to Agrobacterium. This 

phenomenon can be explained by the lack of production 
of phenolic compounds like acetosyringone and 
hydroxyacetosyringone, the inducers of VirA protein 
which induces others vir genes encoding proteins playing 
a major role in gene transfer to the plant cell (Potrykus, 
1991). The second constraint is linked to the problem of 
the proliferation of plant cells and their ability to support 
the stress from the regeneration process. We hope that 
the great progress achieved in the biology of 
Agrobacterium and the expression of the genes playing 

key role in plant development will be helpful in solving the 
constraint linked to the genetic transformation of forest 
trees. Genetic transformation of forest trees offers a great 
opportunity to improve production and knowledge of the 



 
 
 

 

mechanism governing growth and tree development, 

pathways of signal transduction and the process of gene 

silencing in forest trees. 
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