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Modeling techniques were used to study minerals in clay fraction of soils from Capricorn District, Limpopo 
Province, South Africa. Minerals in the clay fraction of soils were identified by X-ray diffraction (XRD) technique and 
semi-quantified. The minerals were then subjected to a combination of exploratory data analysis (EDA), graphical 
visualisation and domain-partitioning techniques in order to determine their cross-influence to one another in terms 
of abundances. Quartz and kaolinite were major dominant minerals in the soils; smectite, feldspar and mica were in 
minor to trace quantities. Consensual associations among other traces and high quantities of minerals were 
detected. Evidence of relationship using EDA portrayed general skewness in favour of quartz and kaolinite. Quartz 
remained dominant in the soils but with a consistent high probability of co-existence with kaolinite. Where there is 
low quartz content, kaolinite increased with the drop in quartz made up for by a combination of smectite, mica and 
feldspar. The nested nature of interaction also revealed indirect relationship between quartz and mica. The tree 
model, which yielded 100% accuracy, showed smectite as the first important mineral in identifying whether there is 
high, medium or low quartz content in the sols. Down the line the model relies heavily on both mica and kaolinite. 
Collating the minerals contents and data modeling procedures, inter alia, it could be inferred that the weathering of 
feldspar and mica may have an impact on the mineralisation of kaolinite and smectite; which are both important 
minerals in several agricultural applications. 
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INTRODUCTION 

 
Regional studies on soil mineralogy in South Africa (SA) 
over the past 25 years in relation to soil properties such 
as erodibility, susceptibility of minerals to dispersion and 
the importance of the clay mineral fraction to K- fixation 
were undertaken in an effort to achieve a better 
understanding of the soils and their behavior (Bühmann 
et al., 2004; Bühmann and Nell, 1999; Bühmann et al., 
2002; Botha, 1992; Ekosse and Fouche, 2006). Most of 
the studies were concerned with the clay size fraction and 
that XRD was the dominant technique used for 
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minerals identification. Stern et al. (1991) studied the 
effect of clay mineralogy on rain infiltration (IR), seal 
formation and soil loss on cultivated soils from SA. 
Comparing the IR and soil losses, it was found that the 
soils comprised of mainly kaolinite and illite with traces of 
smectite. Further, kaolinitic or illitic soils containing traces 
of smectite were dispersive and susceptible to seal 
formation as were smectitic soils.  

Soil clay minerals influence agricultural land use, soil 
fertility and productivity. Studies already undertaken on 
soil clay mineralogy in South Africa were not stretched to 
accommodate agricultural concerns of rural settings in 
Limpopo Province. Soil clay minerals are secondary 
minerals formed by low temperature reactions in the soil 
through weathering. The minerals influence the 



 
 
 

 

physico-chemical, physical and chemical properties of 
soils and have a strong bearing on their usage in 
agriculture. The data for this study are based on three 
types of soils - Inceptic, Oxidic and Plinthic – obtained 
from the Capricorn District, Limpopo Province, South 
Africa. The Limpopo Province is predominantly rural with 
most of its people engaged in subsistence farming and 
the main objective of this study is to promote agricultural 
activities in the province through elucidation on minerals 
of clay fraction of soils.  

The foregoing main objective is attained through a two-
fold analytical approach - minerals identification and 
quantification on the one hand and clay soil data 
modeling on the other. The adopted methods EDA, GDV 
and domain partitioning techniques are typically non-
parametric under which underlying parameters are 
estimated from the data. According to Mardia et al. (1979) 
and Van der Merwe et al. (2002), well-behaving, 
parametric models usually yield exact solutions but in 
most data modeling applications, the assumptions are 
often violated. On the other hand, the data-dependent 
parameter estimation inevitably introduces both training 
and testing randomness in modeling (Mwitondi, 2003; 
Mwitondi et al., 2002) which call for model accuracy and 
reliability. 

 

MATERIALS AND METHODS 
 
Study area and soil sampling 
 
The study was carried out in South Africa (26°14' – 32°10'E and 
25°25' – 21°49'S). Capricorn District in Limpopo Province of South 
Africa is comprised of 316,053 ha. Soils of the study area are 
believed to have been formed from granite, gneiss and migmatite. 
Their clay content ranges from 10 to 25% with soil depths of up to 
120 cm. The area has three different types of soils: Soil type 1, 2 
and 3. Soil type 1 (Inceptic) consisted of soils with a general yellow-
brown apedal B horizon; having colour variation from yellow-brown 
to reddish soils. Soil type 2 (Plinthic) consisted of largely deep red 
soils portraying mainly red apedal B horizon; coupled with minimum 
occurrence of yellow-brown apedal B horizon. The topsoil was 
mainly orthic A horizon rich in organic matter. Soil type 3 (Oxidic) 
exhibited a high degree of weathering. Soil texture ranged from 
sandy to slightly clayey in some areas although the clay content 
was minimal. Soil sampling techniques similar to those adopted by 
Carter and Gregorich (2007) were used with the number of soil 
samples per soil type being determined on the basis of the 
coverage area of the soil type. A total of 21 samples collected at a 
depth of 20 cm were obtained from the study area. 

 

Laboratory analysis 
 
Collected samples were ground and passed through a 2 mm sieve, 
treated with 0.5 M of Sodium acetate buffer solution for the 
dissolution of carbonates and soluble salts. Prior to analysis, 
organic matter was removed from samples by oxidation with 30% 
H2O2 as described by Jackson (1979) and Bird and Chivas (1988). 
Separation of the particle size fractions was carried out in 
accordance to Stoke’s law of sedimentation (Gaspe et al., 1994). 
Clay fraction samples were concentrated by sedimentation and 
mounted on sample holders for XRD analyses. Samples of clay 
fraction of soils were scanned from 2º 2 to 40º 2 and their 

 
 
 
 

 
diffractograms recorded. Interpreted results were compared with 
data and patterns available in the Mineral Powder Diffraction File, 

data book and the search manual issued by the International Center 
for Powder Diffraction Data (ICDD) (2001), for confirmation. 

 

Data analysis 
 
Data modeling was carried out using results of the minerals 
identification and quantification. The first step was to carry out an 
EDA aimed at providing initial insights into the identified minerals 
distribution. The EDA findings led to applications of GDV 
techniques before subjecting the samples to decision tree modeling 
for domain-partitioning. The subjection was to establish how the 
presence or absence of one or more minerals impacts on the 
presence or absence of the other or another mineral. This approach 
derived from probability theory is illustrated using generated XRD 
data as follows: 
 
Let the data matrix  

X  Quartz, Kaolinite, Feldspar, Smectite and Mica   

represent the XRD data labeled by the vector Ck  Low, 
Medium, High of class labels chosen from one  
 
of the five clay minerals in  - that is,  Then, for 

predictive purposes, the following quantities are of interest: 
 

(1) The probability density function, f X , for the random variable 

X which describes the probability density at each point in the 

sample space Ck  . 
 

(2) The class proportions for each of the three levels si , i  1, 2, 
3 which, effectively, describe the probability of class 

PCk . 

(3) The conditional density f X | Ck  defined as the probability  

density at each point in  given that the point belongs to one of the 

three group levels. 
 
The above quantities provide a good intuition into the standard 
concept of conditional probability referring to the existence of a 
particular mineral given that a specified mineral exists in the sample 
as generally defined in Equation 1: 
 

PX | Ck   

PX   Ck   

 PCk  | X   

PCk     X   
(1)  

PCk  PX  
 

 
 

 
We are therefore able to formulate various types of conditional 
probabilities depending on the problem under investigation. For 
instance, to determine how the presence or absence of quartz in 
clay fraction of soils affects the presence or absence of kaolinite in 
the same sample, we may examine the conditional probability and 
vice versa as shown in Equation 2: 
 

PQuartz | Kaolinite  
PQuartz   Kaolinite  

(2) 
 

PKaolinite 
 

  
 

 
The same approach may be adopted in investigating any other 

interesting cross influences of minerals in sampled clay fraction of 
soils. On the basis of the two equations we can compute the 

posterior probabilities in which the phenomenon conditioned upon 



 
 
 

 
typically precedes the one for which the probability is computed. 
Thus, if we are given the data X with known minerals composition 

and we want to allocate it to one of the known three classes, we 
can compute as follows: 
 

Psi | xi   
s j f j xi   ˆ (3)  

J 3  

 sij ,  
 

 s j f j xi    
 

j 1 
 

where i  1, 2,..., N ; j  1, 2,...3; si  is the individual labels for 
 

each of the data points, s j   is the group prior probability and 
 

f j xi  is the marginal density describing the distribution 

associated only with xi in group j . 
 
Basically, xi will be allocated to the group maximizing the probability 
in Equation 3. The same reasoning applies to unsupervised 
learning when class labels are unknown in which case allocation 
will be made in accordance with, the closest distance to one of the 
groups.  

For both GDV and domain-partitioning purposes, two versions of 
the data are used; the original continuous data and its discretised 
(categorical) version. The latter version was obtained by discretising 
each of the mineral variables across the soil sample to form three 
levels (Low, Medium and High) using a simple categorization 
procedure based on the quartile information from the data 
attributes. The discretised variables could then be used to establish 
probabilistic associations or each serving as a target variable in 
predicting class memberships of each observation using the 
remaining predictors in their continuous form. In addition to the 
graphical visualisation approaches, we extend the classification and 
regression tree theoretical foundations in Breiman et al. (1984) to 
carry out cross-decision tree modeling on both datasets. In both 
cases, the prediction of cross -dependence of the minerals 
proceeds via domain partitioning of the initial superset ST= by 
setting as targets both the highest and lowest attributes using the 
remaining variables as predictors. 
 

 

RESULTS AND DISCUSSION 

Minerals in clay fraction of soils 

 
Results of minerals identification and semi-quantitative 
analyses are given in Table 1. Apart from quartz, kaolinite 
was the dominant clay mineral. Other minerals included 
feldspar and traces of smectite and mica. Results related 
to derived models are detailed from quartile- based 
discretised rules and classes for identified minerals 
(Table 2). Due to the fact that this study is interested in 
determining the cross-influence of the minerals in the clay 
fraction of sampled soils, emphasis is put on cross-
mineral dependencies. 
 
 
Exploratory data analyses 
 

A set of initial EDA results is given in Figure 1 in which a 

pair-wise plot of the XRD data is presented with each 

 
 

 
 

 

mineral plotted against every other mineral. The 
distribution of the minerals across the samples was found 
to be generally skewed in favour of quartz and kaolinite 
especially distributions in soil type 3. Only in sample three 
in soil type 2 that the minerals seemed to have been 
relatively and evenly distributed. Only in samples one, 
five and eight of soil type 3 that the kaolinite contents 
were higher than those of quartz. Whereas samples one 
and five also had a high content of smectite, sample eight 
had none. The 20 ([5*(5-1)]) plots in Figure 1 which 
meant to provide insights into the potential bivariate 
relationships among the minerals offered no clearly 
discernible patterns among the paired minerals. It was 
therefore reasonable to carry out further investigation. 
 
 

 

Graphical data visualisation techniques 

 

Bivariate plots of each of the minerals with respect to 
quartz are presented in Figure 2. This form of graphical 
presentation of data similar to that of Cleveland (1993), 
provided good data visualization for quick identification of 
the presence or absence of patterns in well-behaving 
data. Similar plots with kaolinite, feldspar, smectite and 
mica on the vertical axis revealed no discernible patterns. 
The foregoing findings were in line with regression results 
with quartz/kaolinite yielding a negative relationship with 
a beta value of - 0.8403 and a very low correlation 
coefficient of just > 30%. In most of the paired 
relationships, the set zero hypothesis was rejected at 5%. 

The foregoing illustrations are based on classical 
statistics. Thus the next analytical step was data 
subjection to Bayesian-based approach in which 
predictive knowledge was updated based on new 
information entered. The two panels in Figure 3 based on 
continuous data on the left hand side and its discretised 
version on the right provide insights into how the minerals  

in Ck  may be related. In both cases the 
 
observations are ordered from left to right and note that 
although the soil type labels are not given here, the data 
are ordered and therefore the first 3 cases from left to 
right are known to be from soil type1 and the last 15 from 
type 2. Further, each of the minerals in the discretised 
version was been coded using its first letter. The two 
mosaic plots may be viewed in the light of the conditional 
probabilities introduced above and provided information 
based on a mosaic presentation of the data in a 
conditional versus cumulative marginal probability 
dimension (Friendly, 1994). Typically, a contingency table 
could be used to present the data as stacked histograms 
conditioned on the minerals and in this case, the plot 
would display the conditional probabilities on the vertical 
axis. For the two plots, however, it suits our purpose to 
envision their full vertical range as representing the total 

probability 0  p  1. 



 
 
 

 
Table 1. Minerals identification and their quantifications in soil samples.  

 
Soil type Sample number Quartz (wt %) Kaolinite (wt %) Feldspar (wt %) Smectite (wt %) Mica (wt %) 

1 One 54 28 18 - - 

 Two 66 33 - - - 

 Three 75 4 10 - 11 

2 One 60 7 18 6 - 

 Two 53 9 9 7 17 

 Three 47 18 13 9 13 

3 One 29 41 - 30 - 

 Two 58 8 8 - 26 

 Three 54 23 7 - - 

 Four 69 10 10 - 11 

 Five 28 30 - 22 20 

 Six 75 9 8 8 - 

 Seven 62 20 4 11 - 

 Eight 27 28 12 - 21 

 Nine 32 17 11 19 - 

 Ten 55 9 9 3 24 

 Eleven 55 15 10 20 - 

 Twelve 57 17 9 10 7 

 Thirteen 41 24 11 11 13 

 Fourteen 62 26 12 - - 

 Fifteen 50 25 - - 13 
 

 
Table 2. Quartile-based discretised rules and classes.  

 

Minerals Data summaries 
Quartile-based mineral content levels  

 

Low Medium High  

  
 

 First Qrt: 47    
 

Quartz 
Median 55 

Quartz < 47 47 < = Quartz < 53 Quartz > = 53  

Mean 52.81  

    
 

 Third Qrt 62    
 

 First Qrt: 9    
 

Kaolinite 
Median 18 

Kaolinite < 9 9 < = Kaolinite < 26 Kaolinite > = 26  

Mean 19.1 
 

    
 

 Third Qrt 26    
 

 First Qrt: 7    
 

Feldspar 
Median 9 

Feldspar < 7 7 < = Feldspar < 11 Feldspar >= 11  

Mean 8.5 
 

    
 

 Third Qrt 11    
 

 First Qrt: 0    
 

Smectite 
Median 6 

Smectite < 7 7 < = Smectite < 11 Smectite > = 11 
 

Mean 7.4  

    
 

 Third Qrt 11    
 

 First Qrt: 0    
 

Mica 
Median 6 

Mica < 7 7 < = Mica < 9 Mica > = 9 
 

Mean 8.4  

    
  

Third Qrt 13  



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Pairwise plots indicating the potential bivariate relationships among clay minerals. 
 
 

 

Thus, drawing horizontal lines along the mineral 
boundaries could help uncover the co-existence of 
minerals and their corresponding proportions. For 
instance, we should be able to evaluate the probability of 
the co-existence of quartz and kaolinite given that they 
are both in soil sample 3. Across the samples the 
overwhelming quantities of quartz makes it dominant but 
with a consistent high probability of co-existence with 
kaolinite. Even in cases of low quartz content, kaolinite 
seems to rise with the drop in quartz made up for by a 
combination of the other three which is in line with the 
negative relationship uncovered earlier. Although it may 
appear that traces of mica had nothing to do with quartz, 
the nested nature of the interactions which made it 
impossible to draw lines of demarcation along mineral 
boundaries inevitably brought the two minerals into some 
kind of indirect relationship.  

The association plot in Figure 4, based on the variable 
transformations and the parameter thresholds in Table 1, 
shows the cross-mineral associations across the three 
soil samples; the heavier the line the stronger the 
association. The first letter is one of Low, Medium or High 
whereas the second letter in the node code which 
corresponds to the first letter of one of the five minerals. 
Thus, HQ refers to high quantities of quartz and it can be 
seen that a high content of quartz (HQ) is associated with 
a medium content of feldspar (MF). Other strong relations 
are between HQ and low mica content (LM) and between 

 
 
 

 

LS and MF. Quite interestingly, low traces of smectite 

(LS) appear to be associated with both low (LM) and high 

(HM) contents as well as with HQ and MF. 
 
 

Decision tree modeling technique 

 

Classification trees were applied to establish the mineral 

cross-dependencies via domain-partitioning of Ck  
 
using the discretised version of data in Table 1. The 
intuition is that if the discretised variable is, say, mica, the 
prediction results will, effectively, tell us which of the four 
minerals cause low, medium or high mica contents in the 
sampled soils. Thus, our final analyses seek to establish 
the inter-dependence between the clay soil minerals in  

the domain  Ck  using the decision tree prediction 
 
technique. The decision tree model in Figure 5 was 
generated by Clementine’s decision tree routine. The 
discretised quartz variable was set as the target variable 
with the Gini as the measure of purity (impurity). The 
minimum number of records in each branch set to 4% of 
the total while the number in each child node set to half 
that value. Prior probabilities were generated in 
accordance with the training data and were adjusted 
using misclassification costs. The model, which yielded 
100% accuracy, shows that the first important mineral to 
be used in identifying whether there is high, medium or 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Bivariate plots of quartz compared to kaolinite, feldspar, smectite and mica in clay fraction of soils. 
 
 

 

low quartz content in a soil sample is smectite with an 
apparently excessively high misclassification error at the 
initial stage. Down the line the model relies heavily on 
both the trace (mica) and the secondary major mineral 
(kaolinite); due to the secondary dominance of the latter. 
It is worth noting that to attain 100% accuracy the tree 
model was over -trained and so, in consideration of the 
issues of model complexity, accuracy and reliability, we 
set kaolinite to target under exactly the same settings and 
the model yielded an accuracy of 95.24% with quartz 
dominating the splits.  

The foregoing illustrations were based on high-low 

 
 
 

 

relationships and so our next step is to look at the 
opposite relationship in which case we set mica and 
smectite as targets with the remaining input variables. 
The roles of quartz and smectite in predicting mica 
classes with 100% accuracy not only imply a relationship 
between these two minerals and mica, but also 
emphasized the association between the two predictors. 
Similarly, targeting smectite with the remaining four 
variables yielded a very high accuracy but with splits 
dominated by kaolinite and quartz. Thus, both quartz and 
kaolinite were eliminated from the model after which 
targeting smectite with mica and feldspar as predictors 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Graphical presentation of the mosaic plots for discretised and continuous 

minerals concentrations of soil samples. 
 
 

 

yielded an accuracy of 85.71% and showed a stronger 
association between smectite and feldspar despite mica 
being the first most important root node splitting variable. 
Similarly, targeting mica with feldspar and smectite 
yielded a predictive accuracy of 80.95% and exhibited a 
strong relationship between mica and feldspar. 
 

 

Agricultural implications of minerals in clay fraction 

of soils 
 
Minerals identification and quantification revealed varying 
results with respect to the type and amount of minerals 
present in clay fraction of soil. The high percentage of 
kaolinite in the clay fraction of soil types 1and 3 may be 
due to weathering of feldspar and mica altering to 
kaolinite. The low contents of kaolinite in the clay fraction 

 
 
 

 

of soil type 2 results from the lower quantities of feldspar 
and mica both in the country rocks and soils of the study 
area. The dominance of kaolinite over smectite may 
reveal the strong dependence of soil formation on the 
parent material. The existence of kaolinite as the 
dominant secondary mineral may have implications with 
regards to the agricultural potential of the land mainly 
because of its low CEC.  

Soils dominated by smectite require minimum constant 
fertilizer input compared to kaolinite dominated soils, 
because of the ability to hold nutrients in the soil. Their 
water holding capacity is very efficient compared to 
kaolinitic soils due to their ability to expand. However, 
their strong plasticity and stickiness when wet may create 
mechanical problems during cultivation, making the soils 
difficult to work with. The presence of quartz relates well 
with resistance to weathering due to its inert nature. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Cross-mineral associations across clay fraction of soil samples.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Graphical decision tree model for predicting quartz using kaolinite, smectite, mica and feldspar 

variables (note: S = smectite, M = mica, K = kaolinite, F = feldspar). 



 
 
 

 

Quartz present in soil is generally considered chemically 
inactive. Soils dominated by quartz are usually nonplastic 
and enhance drainage. Quartz may be useful in clayey 
areas where drainage is a problem. Hence, agricultural 
management must take into consideration minerals types 
and their associations in the clay fraction of soils if good 
yields are envisaged. 
 

 

Conclusion 

 

This study applied a combination of three data modeling 
non-parametric methods (EDA, GDV and decision tree 
modeling) on dataset of minerals qualitative and 
quantitative compositions of clay fraction of soils from the 
Capricorn district in the Limpopo Province, South Africa. 
Kaolinite and smectite were prevailing secondary 
minerals in the soils of the study area. These minerals 
are believed to have originated from their parent 
materials of which granite is the dominant rock type in the 
area. Mica and feldspar were also present, possibly 
because of incomplete weathering.  

Searching for minerals patterns in clay fraction of soil 
using the studied methods may still be associated with a 
number of issues. It is evident from minerals identification 
analyses, and GDV that minerals in clay fraction of soils 
may co-exist with varying degrees of complexity. 
Although minerals in clay fraction of soils have been 
researched in South Africa, representation in terms of site 
specific research and their implication to agricultural 
practices is still lacking. The paper has demonstrated 
how minerals composition and modeling processes can 
be combined to yield informative results on potential soil 
contents and hence its applications particularly to 
agriculture. The scientific community should therefore 
focus on developing and enhancing soil mineral-specific 
algorithms and approaches to data collection, storage, 
analysis and dissemination. One of the main challenges 
the African continent faces is the incoherence of its 
minerals data repositories. Constructive suggestions on 
how to deal with this problem have been advanced by 
Ekosse and Mwitondi (2009) and Mwitondi (2009). 
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