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Principal Component Analysis (PCA) has been in use as a preprocessing step to clustering for long. We have 
focused on the clustering of tissue samples in gene expression data. Different clustering techniques and algorithm 
are available in literature on gene expression data but with the existing ambiguity on the number of clusters, apart 
from relying on biologically known groups. A consensus is needed to reach on the number of clusters in the wide 
variety of existing clustering techniques based on different similarity or dissimilarity metrics. The conventional 
usage of PCA for clustering is either by forcing the unit variance to each variable or the high magnitude of variance 
of an individual variable is allowed to dominate the entire results of PCA. We propose the use of relative variance 
covariance method in PCA, so as to give due consideration to the joint and individual variances in the dataset and 
identify clusters with principal component loadings. We emphasize empirically that the proposed approach of PCA is 
conclusively more informative than the available approaches to identify cluster structure in tissue samples (sample 
expression profiles). Clusters formed are valid with the existing results on the data set under study and with valid 
biological background. 
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INTRODUCTION 

 
Genomic research has successfully demonstrated the 
utility of DNA micro array-based gene expression data in 
cancer classification. The main goal of micro array 
analysis, in particular of unclassified cancer, is to identify 
novel cancer subtype for subsequent validation and 
prediction, and ultimately to develop individualized 
prognosis and therapy. As a preliminary step of this 
study, clustering is being used as a useful exploratory 
technique in gene expression data to cluster tissue 
samples and genes. A major problem with the application 
of clustering algorithms is that an adequate number of 
clusters can often not be inferred automatically. A purely 
data-driven approach always bears the risk of over- or 
under-clustering because the correct number of clusters  
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usually depends on task-specific constraints. 

Each clustering algorithm has its own set of biases on 
clusters it construct, whereas the most sensible clustering 
algorithm may yield similar results on trivial test problems, 
in practice they can give widely different results on messy 
real world gene expression data (D’haeseleer, 2005). A 
number of clustering techniques on gene expression data 
sets have been practiced with the success of clustering 
algorithm, assessed by visual inspection using biological 
knowledge (Eisen et al., 1998, Golub et al., 1999, 
Quackenbush, 2001; Akashi et al., 2003). The challenge 
of interpretation in the absence of such biological 
knowledge is accepted in our study of clustering the 
sample expression profiles in the dataset by the proposed 
approach. Studies in the context of clustering of tissue 
samples include classifying sixty human cancer lines 
(Ross et al., 2000), distinguishing two different human 
acute leukemia’s (Golub et al., 1999), dissecting and 
classifying breast cancer tumors 



 
 
 

 

(Perou et al., 1999), classifying subtypes of B-cell 
lymphoma (Alizadeh et al., 2000), and cutaneous 
malignant melanoma (Bittner et al., 2000). Bullinger et al. 
and Valk et al. in 2004 identified prognostic subclasses in 
acute myeloid leukemia, and in the same year (Lapointe 
et al., 2004) found tumor subtypes of prostrate cancer 
with the provision of basis for improved prognostication 
and treatment stratification.  

In the study, we emphasize that clustering with 
Principal Component Analysis (PCA) provides a means of 
projecting the data into a lower dimensional space, 
making the visual inspection hopefully more informative. 
One such application of PCA has been (Tamayo and 
Ramaswami, 2002) on the initial leukemia gene dataset 
of Golub et al. (1999). The top three principal 
components (PCs) for the 612 most highly varying genes 
in the Leukemia subtypes dataset were projected in 3D 
plot. The exhibited data structure was interpreted 
corresponding to the known three morphological 
subclasses (The ALL-B, ALL-T and AML) in the leukemia 
cancer type. The 3D plot of the PCs revealed overlapping 
of the samples among the three Leukemia types and a 
clear four cluster structure. A sample from ALL-B visually 
represented an outlier, lying at the farthest distance in the 
extreme left corner of the 3DPlot. These aspects went 
unnoticed, which in fact required an interpretation apart 
from the explanation of the three known leukemia type of 
the dataset. 
 
 
A review of application of PCA 

 

A criticism in applying PC cluster analysis has been that 
the first few PC’s (which explain most of the variation in 
the data) does not necessarily capture most of the cluster 
structure (Yeung et al., 2001). The criticism was based on 
the theoretical results (Chang, 1983) showed that first few 
PC’s may not contain cluster information: assuming that 
the data was a mixture of two multivariate normal 
distributions with different means but with an identical 
within-cluster covariance matrix, and the first few PC’s 
may contain less cluster structure information than other 
PC’s . An artificial example was generated, in which there 
were two clusters and the data points were visualized in 
two dimensions only, the two clusters were well 
separated in the subspace of first and last PC. In 
response, it has been demonstrated empirically (Ben-Hur 
et al., 2002) that PCA has the ability to extract features 
relevant to the cluster structure, that the few leading PC’s 
enhances cluster structure and the results of Yoeung et 
al. (2001) were the use of standardization as 
normalization in the analysis, so reduced the quality of 
the clustering, rather than the use of PCA. Then it has 
been concluded that the degradation in the recovery of 
the clusters through PC’s should be attributed to 
normalization, rather than to the use of PCA (Anderberg, 
1983; Milligan and Cooper, 1988). Since PC’s are 
uncorrelated and ordered, the first few PC’s, which 

  
  

 
 

 

explain most of the variation in the dataset, are usually 
used in cluster analysis, as these may extract the cluster 
structure in the dataset ( Jolliffe, 1980).  

We have emphasized the use of PCA with variance 

covariance matrix ( rel ) apart from the conventional 

approaches to derive PCs to cluster sample expression 

profiles in the data under study. The methodology of rel 

approach to cluster the variables; the sample expression 
profiles of the gene expression dataset has been 
exercised in the study and is a novelty in clustering 
techniques applied on variables in highly skewed gene 
expression datasets. The clusters formed are later 
verified by the biological knowledge and with room for 
future consensus on the configuration of clusters.  

The approach of the rel in PCA for the interpretation of 

PCs, as an alternative to the variance covariance  
matrix (  ) and the correlation matrix ( R ) has been 
introduced in literature (Wajid and Ali 1998). Describing  

the merits and demerits of  and R in PCA, rel was used 

as an intermediate way to fill in the gap between the two 

approaches to derive PCs on two data sets measured on 

the same and different scale. Concluding empirically that 

the three methods reveal different features of the 

correlation structure of the datasets and all the 

interpretations were equally useful to assess the  

hidden features in the datasets. The precedence of rel in 
 
PCA has been further worked out lately as well (Boik and 
Shirvani 2008). A PC model was proposed for the 

 rel and then the least square estimators of the eigen
 

values  and  eigenvectors  of relwere  developed  with 
 
empirical demonstration on real data and the simulative 
validation of proposed inference procedure. 

We have introduced the interpretation of PC’s derived  

from rel to cluster samples and the PC loadings in a 3D 

representation: a simple multivariate method. In doing so, 

comparison has been made with PC loadings derived 

with R (the conventional approach) to identify cluster 

structure in the dataset. The former approach is found to 
be better than the later approach. 
 

 
MATERIALS AND METHODS 
 
Clustering methods: A comparison 
 
Most often the clustering methods branch off as (i) hierarchical and 
(ii) partitioning. Hierarchical clustering is a method useful for 
dividing data into natural groups by organizing the data into a 
hierarchical tree structure (“dendogram”) based upon the degree of 
similarity between either sample or genes. Since the emergence of 
cluster structure depends on several choices: (i) data 
representation (ii) normalization (iii) the choice of a similarity 
measure and (iv) the clustering algorithm. Therefore the hierarchical 
clustering method, a highly structured method provides different 
results because of the choice of the similarity metric (Goldstein et 



 
 
 

 
al., 2002).  

Partitioning method (non-hierarchical) on the other hand, 

subdivide the data into a typically predetermined number of subsets 
without any implied hierarchical relationship between these clusters  

like 
k

 -means clustering. The 
k

 


 
means

 clustering result depends 

on the initial partition (initial seeds) of the clusters and is preferred 
over the hierarchical methods in computation for large data sets. If 
the initial seeds are selected according to some known features of  

the data, then the 
k

 


 
means

 clustering is quite robust (Milligan, 
1980). The pivot is with initial seeds of clusters chosen to be genes 

of vital and known biological functions, and 

k
 


 

means
 clustering 

would be robust with meaningful results. When seed genes are not 
available or hard to find which the case is usually, then the option is 
viewing hierarchical and nonhierarchical techniques as 
 
complementary  to  one  another,  that  is  treating 
clustering with initialization by either complete or average linkage or 
any other hierarchical clustering output. Hence, the choice of 
similarity metric is still there. The Self Organizing Map (SOM) is 
another non hierarchical clustering algorithm where a grid of two 
dimensional (2D) nodes (clusters) is iteratively adjusted to reflect 
the global structure in the expression dataset. A 2-cluster SOM was 
used to cluster the initial set of 38 leukemia samples into two 
classes based on the expression pattern of 6817 genes. The two 
SOM clusters were then compared to the known lymphoblastic vs 
myeloid leukemia (AML and ALL) distinction. The two SOM clusters 
closely paralleled this morphological distinction, with the first cluster 
containing mostly ALLs (24 out of 25 samples) and the second 
containing mostly AMLs (10 out of 13 samples). Thus, the clustering 
algorithm was effective but not perfect at separating samples into 
biologically meaningful groups. Sub-classifications for further 
samples was searched constructing a 4-class (2 × 2) SOM. The 
clustering algorithm was successful at separating the samples into 
more refined groups reflecting other important biological distinction: 
different ALL cell lineages (B- and T-Cell) (Golub et al., 1999).Thus 
the clustering results were searched further to be interpretable in 
the context of a prior knowledge (that is, known leukemia sub-
classes). Yet the search was not effective in exclusively defining the 
three known biological groups exclusively. The overlapping feature 
among the samples existed but was not explored. 
 

 
The Principal Component Analysis 

 
PCA  is  a mathematical  technique  that  transforms  a  set  of 

 

p 
variables 

 X  [ X1 ,  , X p ]
T
 

 

    into a new set of variables, such 
 

that these transformed variables 
Y

 


 
[Y

1
 
,Y

2
 
, ,

 
Y

p
 
]

T
 are 

orthogonal to each other and are derived in such a way that the first 
few of these explain almost all the variation in the data. These new 
set of variables are the Principal Components( PCs) , which are 
presented in an ordered form, so that the first PC explain the 
highest proportion of variation, the second explain maximum of the 
remaining proportion of variation and so on. As a result the variation 
in the data explained is condensed by a few numbers of orthogonal 
variables which are easily interpretable.  
 
 

PCA with correlation matrix ( R ) 

 

Let the operator 
Diag(a)

 is the diagonal matrix whose ith diagonal 

component is 

a
i
 . 
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as the variance-covariance matrix of the 
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The ith PC is then defined as 
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or 
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i , for which 
 

            
 

(i) E(Yi )  0   
,(ii) Var(Yi )  i , and (iii) Cov(Yi ,Yj )  0 i  j 

 

  

                                     
 

The coefficients of 


i
 , the ith eigen vector of 


 is called the ith 

 

PC. Finding the variance of                             
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  Var( Y )    Var(Yi )    i 
                       

 

                          
 

              i     i                        
  

Y Var(Y )  tr()  tr(R)  p  

Therefore  

p
 is the total variation in the data equivalent to the total 

p  
i ii  p  

number of variables and ith PC accounts for 
i1

 , the proportion of 

the total variation, using R . 

PCA with relative variance covariance matrix ( 


rel

 ) 

Let 
X  

now be defined as 
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The new set of orthogonal PCs under the 


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  is      
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PCA with 


rel

  versus PCA with R 

When sample variances differ widely in magnitude, use of the 
standardized version of the variables is very much in convention. 
Thus the individual variances are standardized to one, thereby 
eliminating the effects of variances. Then the linear combinations in 
PC’s are found that have maximal variance, even though the effect 
of the disparity in variances have been removed. Explaining  

conclusively that, R is inherently less informative than 


 ; the variance 

covariance matrix of the data (Anderson, 1963). We 

propose  that  


rel is  as  informative  as   because  
D

w
2 are  the 

informative  relative  variances.  The  few PC’s  of  


rel   highlight 

variables that have larger relative variances just like 


 , thus the 

PC’s computed on 


rel

  are not subject to Anderson’s criticism 
because the effects of variances have not been eliminated rather 

 
expressed  in  terms  of  their  means  as is  a  matrix  of 
transformed  data,  on  which  the  meaning  of  origin  has  been  

preserved ( 
X

 rel 


 
D

w 
Z

 ), with 


rel

 as scale invariant and 

choice of scale transformations need not be made. 

 

PC loadings 
 

The interpretations of PC’s are distilled from the respective  

coefficient (loadings) of the eigenvector ( 


 
i
 ). The ith PC is 

interpreted by looking at the loading for each variable (the sample 
expression profiles). Variables with small magnitude are ignored 
and the PC is then approximated by the linear combination 
involving only the remaining variables with higher component  

loadings. Geometrically the elements of 


 
i
 are the direction 

cosines of the PC axis to the old coordinate axis and correlation is  

as just the cosine of the angle 


 
ij
 subtended at the origin between 

the two axes the original and the PC axis, with inner product as the 
covariance between PC axis and the original coordinate axis. Then 
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The proposed study would show the use of PC loadings from 

Equation (1) for clustering the variables that is the sample 

expression profiles in the data under study. 

 

Data analysis 
 

The dataset under study is the gene expression initial leukemia 
data set, available at http://www.genome.wi.mit.edu/MPR. The 
dataset consist of 38 bone marrow samples, 27 acute lymphoblastic 
leukemia (ALL) and 11 acute myeloid leukemia (AML) obtained 
from Acute Leukemia patients at the time of diagnosis before 
chemotherapy. The ALL type has a futher classification of 19 ALL-B 
cell leukemia and 08 ALL-T cell leukemia samples. PCA is used as 
a visualization tool to provide a low dimensional summary of the 
data. The 3Dimensional (3D) scatter plots of PC loadings under the 
two approaches have been used to visualize clusters in the dataset. 
The 3D scatter plot often reveal group structure in a dataset better 
than looking at a series of 2D plots. The data set was processed 
with the preprocessing steps of Dudoit et al. (2002a) of 
thresholding: floor of 100 and ceiling of 16000; filtering: exclusion of 

genes with max/min 


 
5

and (max-min) 


 
5000

 where the max and 

min refer, respectively, to the maximum and minimum expression 
levels of a particular gene, across a tissue sample. Natural 
logarithm of the expression levels is used to provide good variance 
stabilization at high levels of gene expressions. Thus, we have 
2299 gene expressions for each of the samples. 
 

 

RESULTS 
 

Following Kaiser criterion of 


j  

 
1
  PCs retained are 

k = 4
 

using R , that are accounting for 68% of the total variation 

in the dataset. Same numbers of PCs are retained from 
 

PCA using 


rel explaining 68.70% of the relative variation in the 

dataset (Table 1). The magnitude of variation explained by the 
retained PC’s under the two approaches is almost the same but 
owing to the concept of the 

 
explanation  of  the  variation, explains  the  relative 
variance of each sample, with the others and is the ratio 
of the standard deviation to the mean. The standard 
deviation of data must always be understood in the 
context of the mean of the data specifically when the 
mean vary widely as in our dataset. 
 

 

Interpreting PC loadings 

 

The principal components derived under the two 
approaches are presented in Table 2. The two immediate 
contrasts for magnitudes of PC loadings are the positive 
(non bold font) and negative loadings (in bold font) under 
the methods (Table 2). The positive and negative 
loadings (in bold letters) are further fairly grouped as 
loadings greater than as and less than 0.1. PC1 derived 
from the two methods is the general index of the dataset 
with almost the same magnitude of loadings. PC4 do not 
clarify any distinctive biological group and shows that 
there exist further sub grouping in specifically ALL-B 
samples and its overlapping with the AML samples. The 


rel 


rel 



 
 
 

 

Table 1. Proportion of variance explained by PCs ( R and 


rel ).  
 

 Var explained PC1 PC2 PC3 PC4 Total variance 

 R 53.82% 6.70% 4.30% 3.20% 68% 

 


rel 54.45% 6.76% 4.22% 3.22% 68.70% 
 

 
Table 2. Loading table of the retained PCs.   

    PC loadings using R (


i 
s

 ) PC loadings using 


rel  (


i,rel 

s
 ) 

    PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

 Circle small in size X1 ALL-B -0.176 0.115 0.026 0.174 -0.167 0.116 0.037 0.140 

 Plus X2 ALL-B -0.175 0.114 0.012 0.153 -0.172 0.118 0.022 0.133 

 Cross X3 ALL-B -0.170 0.149 0.160 -0.238 -0.150 0.123 0.144 -0.211 

 Dot X4 ALL-B -0.170 0.047 -0.010 0.231 -0.171 0.056 -0.003 0.216 

 Solid circle X5 ALL-B -0.159 0.022 0.014 0.403 -0.165 0.038 0.029 0.406 

 Asterisk X6ALL-B -0.170 -0.097 0.044 0.057 -0.179 -0.093 0.042 0.051 

 Dot circle X7 ALL-B -0.167 0.231 0.207 -0.129 -0.160 0.216 0.216 -0.146 

 Plus circle X8 ALL-B -0.170 0.217 0.137 -0.156 -0.163 0.203 0.143 -0.162 

 Cross circle X9 ALL-B -0.174 0.197 0.109 0.000 -0.161 0.182 0.115 -0.022 

 Circle circle X10 ALL-B -0.157 0.061 0.017 -0.156 -0.158 0.065 0.023 -0.159 

 Square X11 ALL-B -0.161 0.054 0.059 0.034 -0.157 0.059 0.067 0.020 

 Solid square X12 ALL-B -0.168 0.131 0.197 0.037 -0.165 0.128 0.207 0.012 

 Dot square X13 ALL-B -0.150 0.214 0.230 -0.101 -0.144 0.199 0.240 -0.110 

 Cross square X14 ALL-B -0.131 0.154 0.089 0.026 -0.143 0.180 0.135 0.010 

 Diamond X15 ALL-B -0.163 -0.007 0.067 0.301 -0.173 0.005 0.085 0.310 

 Solid diamond X16 ALL-B -0.165 0.215 0.093 -0.073 -0.155 0.199 0.102 -0.085 

 Dot diamond X17 ALL-B -0.167 -0.041 0.147 0.093 -0.165 -0.035 0.146 0.076 

 Plus diamond X18 ALL-B -0.172 0.141 0.183 0.021 -0.166 0.135 0.188 -0.007 

 Triangle X19 ALL-B -0.148 0.051 -0.036 0.376 -0.162 0.075 -0.024 0.416 

 Solid triangle med in size X20 ALL-T -0.170 -0.061 -0.095 -0.214 -0.166 -0.049 -0.094 -0.198 

 Dot triangle X21 ALL-T -0.166 0.072 -0.348 0.044 -0.166 0.095 -0.340 0.038 

 Triangle right X22 ALL-T -0.165 0.041 -0.372 0.006 -0.170 0.064 -0.383 0.002 

 Solid triangle right X23 ALL-T -0.165 0.080 -0.315 -0.181 -0.163 0.096 -0.304 -0.175 

 Dot triangle right X24 ALL-T -0.169 0.014 -0.232 -0.141 -0.172 0.031 -0.234 -0.143 

 Triangle left X25 ALL-T -0.165 0.061 -0.278 -0.140 -0.165 0.079 -0.269 -0.138 

 Solid triangle left X26 ALL-T -0.169 0.066 -0.181 -0.194 -0.161 0.073 -0.165 -0.180 

 Dot triangle left X27 ALL-T -0.160 0.045 -0.367 0.107 -0.162 0.072 -0.364 0.102 

 Circle large in size X28 AML -0.170 -0.150 0.003 -0.009 -0.171 -0.141 -0.007 -0.013 

 Plus circle X29 AML -0.161 -0.114 -0.039 0.158 -0.165 -0.103 -0.044 0.153 

 Solid circle X30 AML -0.146 -0.278 0.076 -0.151 -0.152 -0.287 0.056 -0.146 

 Circle circle X31 AML -0.141 -0.350 0.089 -0.025 -0.150 -0.363 0.071 -0.012 

 Cross circle X32 AML -0.145 -0.224 0.028 0.081 -0.152 -0.223 0.020 0.092 

 Dot circle X33 AML -0.169 -0.211 0.074 -0.017 -0.161 -0.190 0.058 -0.013 

 Square X34 AML -0.153 -0.200 0.125 -0.227 -0.159 -0.208 0.116 -0.230 

 Solid square X35 AML -0.145 -0.261 0.104 -0.222 -0.155 -0.281 0.089 -0.224 

 Dot square X36 AML -0.170 -0.175 -0.050 -0.026 -0.178 -0.174 -0.070 -0.027 

 Cross square X37 AML -0.146 -0.163 0.010 -0.018 -0.167 -0.148 -0.001 -0.017 

 Diamond X38 AML -0.138 -0.338 0.089 0.137 -0.144 -0.341 0.073 0.155 



 
  

 
 

 
Table 3. Cluster configurations from retained PCs under the two methods.  

 
   Negative loadings Positive loadings 

 

    0.1  0.1  0.1  0.1 
 

 
PC2 with R X6, X15, X17, X20 

X28-X38 X4, X5, X10, X11, X19, X1-X3, X7-X9, X12-X14, X16, X18 
 

 AML group X21-X27 Subgroup of ALL-B  

    
 

    
X21-X27 X1, X2 ,X5 ,X6 

X3, X7-X9, X12 X13, X17, X18, 
 

 

PC3 with R 
X4, X19, X20, X29, X34, X35, X37, X38  
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Figure 1. 2D plot of PC loadings using correlation matrix. 

 
 

 

detailed configuration of tissue samples with respect to 
positive and negative loadings is presented in Table 3.  

The interpretation of PC2 derived from the two 
approaches show a distinctive contrast of leukemia type 
the AML with 11 out of 19 samples of ALL-B leukemia 
group with high positive and negative loadings. PC3 
derived from both methods single out the ALL-T tissue 
samples (X21-X27) as leukemia type widely different from 
the others. Noticeably X20 the ALL-T sample with not a 
significant magnitude of loading, in any case do not fall in 
its own biologically known group rather groups with few of 
the AML and ALL-B samples. The distinctive feature is 
that none of the biological known group retains its exact 
individual identity of biological significance; the 
overlapping of samples is very much evident and must be 

 
 
 

 

taken into consideration, well supported by the fact that 
all these samples are positively correlated with one 
another. For an initial exploration of clusters we choose to 
draw a 2D scatter plot of the two most informative PCs 
(PC3 vs PC2). Interestingly, the two plots Figures 1 and 3 
appear to be the exact replica of one another, visible are 
the four clusters, with same configuration (Figures 1 and 
3).  

The four clusters are from the top left corner of Figures 

1 and 3 the configuration is as follows: 
 
1. X30- X35 and X38 (A subgroup of AML samples) 
2. X6, X20, X28, X29, X36, X37 (The overlapping cluster) 
3. X21 – X27 (ALL-T samples) 
4. X1 – X5, X7 – X19 The ALL-B samples appear to be 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. 3D plot of PC loadings using correlation matrix.  
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Figure 3. 2D plot of PC loadings using relative variance covariance matrix. 

 

 

one big cluster, with a sub clusters structure in it. 
 

PC1 which is the projection on the direction in which the 
variance of the projection is maximized is generally not 
taken for visual representation instead a series of 2D 
plots is preferred. For a distinction between the two 
representations, here we project through 3D loading plot 
of PC1, PC2 and PC3, the clusters and their 
configuration. 

 
 

 
Figures 2 and 4, represents 3D loading plot of PCs 
derived from the correlation and relative variance 
covariance matrix of the dataset. The visible number of 

clusters is four. The ALL-B sample X17 (identified by dot 
diamond) in Figure 3 falls in cluster 1(Subgroup of AML 

samples) with X 33 the AML sample grouping in cluster 2 
(the overlapping cluster).  

From Figure 4, it can be seen that these are back in 

their own biological groups of ALL-B and AML samples 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3D plot of PC loadings using relative variance covariance matrix. 
 

 

 

respectively. Here, we note that PC1 (the general index 
 

of the data set) derived from 


rel clarify the clusters and 

confirms with the configuration of clusters presented in 
the unanimous 2D presentation. Merely stating that 
relative variance covariance matrix approaches the data 
set in a more informative way in identifying the true 
structure lying among samples expression profiles in the 
data set. 

 

DISCUSSION 
 

The conventional approach of correlation matrix in PCA 
has been presented in comparison with the proposed 
approach of relative variance covariance matrix in PCA to 
capture cluster structure in the data set. Both the 
approaches unanimously suggest four main clusters in 
the dataset. The clusters are not exactly mutually 
exclusive with respect to their biological identities, instead 
there exist an overlapping of ALL-B samples with AML 
and ALL- T samples an important aspect that need to be 
explored. The overlapping feature and a four cluster 
structure were observed with the clustering technique 
SOM. The objective was to find and justify the three 
morphologically known biological samples distinctively. In 
the use of agglomerative clustering with average linkage 
method on 38 samples with 3000 genes in fact revealed 
four clusters, two clusters of AML and ALL-T samples 
with other two of ALL-B samples. The four clusters were 
achieved, thereby further splitting the dendogram 
objectively to justify the three known classes of leukemia 

 

 

 

 

types. The cluster configuration apparently seemed 
different in the two approaches. The other application of 
PCA by (Tamayo and Ramaswamy, 2002) on 618 genes 
across 38 samples, confirms the previous approach of 
clustering to justify the known biological samples. The 
study completed in this paper provide an interpretations 
of the first four PC from the two approaches, that 
distinguish the 3 known biological cluster of samples with 
the overlapping cluster dominant in the two approaches. 
The configuration of the overlapping cluster has been 
presented and matches the representation in 2D plots 

and Figure 4 (the 3D representation under the 


rel ).  

In addition, the proposed method on the data set is 
explaining variation in the dataset using relative variance 
approach. without eliminating the effect of variance 

through equi-variance, as in R rather the relative variance of 

the data provide better comparison being as informative as 
the variance covariance matrix and thereby preventing the 

first PC to be dominated by large 

 
variance in the dataset. The first PC of being the 

general index of the dataset (or the size component of the 
dataset) and capturing most of the relative variance of 
samples with each other brings the difference in the two 
approaches and finalizes the configuration of clusters 
formed. The dataset has been interpreted without purely 
relying on the priori biological knowledge and the results 
are validated with the following biological knowledge. 
 

Research in cancer studies is focusing on the option 

that myeloid cells and B-lymphocytes may be sharing the 

one and same source of progenitor stem cell. These 


rel 



 
 
 

 

might be sharing the same gene type as these both 
originate from the bone marrow in the human body. An 
overlapping of ALL-B samples exits with the AML and the 
ALL-T samples. The fact that B and T lymphocytes share 
the common function of developing antibodies but 
originate from different sources as T-Lymphocytes 
originate from the thymus in the human body. They may 
group together on the basis of similar function and 
provide a biological validation of the results of number of 
clusters and their configuration. The overlapping cluster 
be defined as a new tumor subtype and may provide a 
basis for improved prognostication and treatment 
stratification. The sub clusters of ALL- B leukemia needs 
to be configured, explored and verified. 
 

 

Conclusion 

 

Conclusively, 


rel for deriving PC and its use in clustering 

of samples is more informative in identifying cluster 
structure in a highly skewed type of gene expression 
data. In our study, PC1 has emerged with a unanimous 
finalization number and configuration of clusters, and 
provided the intricate difference between the two 
approaches. We propose that the gene expression data 
sets that are usually a highly skewed type of data sets 
need to be explored for clustering samples at the 
preliminary stages, apart from the conventional usage of 
correlation matrix, with the methodology of relative 
variance matrix for extracting the features in the datasets. 

Thus, the PCA based clustering may be regarded as a 
competitor to consensus on the number of clusters to 
standard cluster analysis of samples in gene expression 
dataset. The whole family of clustering methods, differing 
only in the way inter cluster distance is defined (the 
“linkage function”), resulting in different number and 
formation of clusters. In clustering with PCA as an 
exploratory method, the choice of similarity and 
dissimilarity measures reduces to covariance and 
correlation matrices (Jackson, 2002). This choice in our 
study has further reduced to the relative variance 
covariance matrix, specifically to deal with highly skewed 
type of gene expression datasets. 
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