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DESCRIPTION

The Indo-Pakistan mosquito, Anopheles stephensi, is a 
vector of human malaria on the Asian subcontinent where it 
is responsible for significant pathogen transmission in urban 
environments (Hati 1997, Thomas et al., 2017), It has recently 
invaded and appears established in Northeastern Africa with 
a high likelihood of moving to major urban areas throughout 
the continent (Tadesse et al., 2022, Sinka et al., 2020), Similar 
to the major African vector mosquitoes, An. stephensi shows a 
high degree of adaptability and accommodation to man-made 
environments and likewise exhibits resistance to commonly-
used insecticides (Enayati et al., 2020, Safi et al., 2017), As a 
consequence, it is a proposed target for new genetic tools to 
control transmission of the Plasmodium parasites. It is a focus 
of efforts to develop population modifications strains designed 
to prevent transmission of the parasites (Carballar-Lejarazú et 
al., 2017, Isaacs et al., 2012).

DISCUSSION

Population modification technology require a gene-drive 
system, a mechanism for rapidly introducing beneficial, anti-
parasite genes into wild populations and An. stephensi was 
the first system published in which this was developed (Gantz 
et al., 2015), This system could drive anti-parasite genes into 
~99% of progeny when the parent was a male, but only about 
60-70% of the time when the parent was a female. A significant 
fraction of ‘drive-resistant’ alleles was generated in females 
that subsequently interfered with gene-drive dynamics in the 
female germline.

Researchers at the University of California (UC), Irvine, 
along with colleagues at UC Berkeley and UC San Diego, have 
developed a highly-efficient, second-generation gene drive 
system for An. Stephensi (Adolfi et al., 2020), The failure to 
drive efficiently through females was solved by equipping the 
gene drive system with a functional copy of the gene into which 
the drive inserts (the kynurenine hydroxylase [kh] gene, which 
encodes an enzyme required for eye-pigment production). 
Females of the strain used in this study that are homozygous 
for disruptions of the kh gene exhibit reduced survival and 
reproductive output following a bloodmeal resulting in 
population extinctions in some small cage trials (Pham et al., 
2019), However, lower release ratios of gene drive-to-wild 
type males resulted in a dampening of the drive dynamics 
and selection for mosquitoes with functional drive-resistant 
alleles that lacked the gene-drive system and maintained 
the populations. The “recoded” kh-drive does not cause the 
adverse female post-blood feeding phenotypes and benefits 
from a phenomenon designated ‘lethal/sterile mosaicism, 
demonstrated first in the vinegar fly, Drosophila melanogaster 
(Guichard et al., 2019),   The two effects, recoding the kh 
target gene and lethal/sterile mosaicism, result in a strong and 
consistent drive in small cage population modification trials 
and maintain >95% of the mosquitoes carrying the gene-drive 
system.  This approach of targeting a gene-drive system to an 
essential gene (for viability or fertility) and complementing the 
disruption with a recoded gene to restore function may provide 
a general approach to the drive-resistant allele problem through 
females (Kormos et al., 2020).

CONCLUSION

Genetic modification strategies are new technologies and 
it is incumbent on the developers to provide open and honest 
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communications with potential end-users and all stakeholders. 
Towards that end, we are pursuing a relationship-based model 
to ensure that the necessary information is available and 
understood by the decision-makers who ultimately will be 
responsible for the use of these technologies.
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