
In ternationa l
Scholars
Journa ls

African Journal of Library and Information Science ISSN 5721-610X Vol. 4 (8), pp. 001-013, August, 2018.
Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Review

Software reverse engineering process: Factors,

elements and features

Nadim Asif

Department of Computer Science, GC University Faisalabad, Faisalabad, Pakistan. E-mail: nasif@softresearch.org.

Accepted 04 February, 2018

The reverse engineering presents the system artifacts at higher levels of abstraction for maintenance activities. This
paper presents an overview of the case studies on various types of existing software system to recover the different
artifacts existing at implementation, structural, functional and domain levels. As a result of these case studies; the
factors on which reverse engineering process depends, features and elements required by the reverse engineering
process to recover the artifacts for maintenance at domain, functional, structural and implementation abstraction
levels in varying details for reverse engineering are identified and presented in this paper.

Key words: Case studies, software maintenance, re-engineering, reverse engineering, design recovery.

INTRODUCTION

The software engineers require different types of
documents to perform the maintenance activities and
these abstracted documents and artifacts (example
requirements, design artifacts, architectures) are used in
planning, re-engineering, re-designing, reuse and for
other purposes in the software systems. The Reverse
Engineering techniques help to represent the system at
higher levels of abstraction than code (Chikofsky et al.,
1990) and the maintenance activities use the reverse
engineering techniques to represent the system at
different levels of abstractions using the existing available
source code and documents. Source code and available
documents are used to extract different types of artifacts
for maintenance tasks. Source code exit in many forms:
May be an existing system is implemented in multiple
languages or have different dialects, have errors and not
possible to compile it or complete code is not available.
Reverse engineering process is applied to recover the
artifacts, which exist at domain, functional, structural and
implementation level for the maintenance activities. The
artifacts at implementation level are the files, the syntax
and semantic of language and system components
(program or module tree). The structural level represent
how the system component are related and control each
other, and at this level design is represented (example
data flow, control flow and structure charts). The function
level further abstract the system component or sub-

components to reveal the relation and logic which
perform certain tasks. The domain level further more abs-
tracts the functions/objects by replacing the algorithmic
nature with concepts and specific to the application
domain.

The artifacts are required to recover from the
implementation, structural, functional and domain levels
in varying levels of details for the maintenance activities.
The artifacts exist in simple form to complex and require
representing in different formats (example, UML
diagrams). Some artifacts can be recovered at the same
level but the artifacts like architectures require recovering
many artifacts from different levels in varying details and
abstracting it to form other artifacts.

The reverse engineering is done at the implementation,
structural, functional and domain level to abstract the
artifacts and present it at higher levels of abstraction.
What are the factors on which the reverse engineer
process depends? Software engineers adapt different
processes to perform the reverse engineering. What are
the elements of software reverse engineering process?
The case study approach was selected to identify the
factors and element of the reverse engineering process
[Kitchenham et al., 2002; Barry et al., 2005; Flyvbjerg,
2006; Lutters and Seaman 2007; Easterbrook et al.,
2007; Zelkowitz, 2009; Robert, 2009]. The source codes
of currently most public used software systems were

identified. The Zip, Unravel, Mozilla, Design Recovery
Tool (DRT), Commercial Email System and Apache
software systems have been evolved with the time and
software engineers use these software systems for
reverse engineering. These software systems were
selected to conduct the case studies in different
environments, with different software engineers in
different period of time. The data is collected from the
available documents, source codes and software
engineers. The data analysis is performed on the
identified specific actions and characteristics. These
observable actions become the key variables in the
study.

This paper presents the case studies details conducted
for the recovery of artifacts for maintenance tasks
performed at different levels of abstraction [Nadim et al.,
2002; Nadim., 2002; Nadim, 2003; Nadim and Muthu,
2005; Nadim, 2007] and the details of the identified
factors on which the reverse engineering process
depend. The elements and features required by the
reverse engineering activities, which were also identified
during these studies.

TOOLS AND APPROACHES

The parse based tool and regular expressions based
tools, are used to extract the source code models. For
semantic analysis, compilers often construct an abstract
syntax tree (AST) whose nodes are programming
language constructs and whose edges express the
hierarchical relation between those constructs. The
structure of an AST is basically a simplification of the
underlying grammar of programming languages, example
by generalization or by suppressing chain rules. AST
provide more fine-grained information and a more global
picture of the system and can be represented by Entity-
Relationship Graph (ERG). An ERG is basically a general
entity relationship model to represent knowledge on a
given program. The entities of the ERG are the
programming language concepts of interest, such as
functions, types, and variables.

Many approaches construct parse trees from the
system artifacts, and provide support for traversing and
performing different types of actions on the parse trees.
The techniques are invariably to construct the semantic
ERG whose nodes represent entities (from expression to
subsystem) and whose edges represent relationships
(implicit or explicit) find between them in code example
Rigi [Muller and Uhl, 1990], Datrix [Datrix, 2000] and
Columbus [Ferenc and Beszedes, 2002] schemas. What
vary in details are the completeness and the strictness of
adherence to a previously determined or stated schema.
Some tools, including Rigi [Muller et al., 2002], PBS [Holt

et al., 2002] support regular expressions match over
parse trees. Cflow [Cflow, 2002] parse the C facts from

the system artifacts. CPPX [Dean et al., 2001] is a
general-purpose parser and fact extractor for C++. It

relies on the preprocessing, parsing, and semantic
analysis of GNU g++ compiler and produces a graph
based on the Datrix fact model in either GXL (Graph
Exchange Language) format. GXL [Holt and Winter,
2000] is an exchange format, which is applicable in
various reverse engineering tools. Others, such as
Refinery [Burson et al., 1990], GURPO [Kullbach and
Winter, 1999] and Acacia/CIA [Kullbach and Winter,
1999] use different approaches for querying and
transforming parse tree. The parse based approaches,
generally support the extraction of large range of source
code models (example Resource Flow Graph [Muller and
Uhl, 1990]). This makes it also possible using the regular
extraction technique for different tasks on the source
code models extracted by using these approaches.

Many tools and languages also support the extraction
of text artifacts for specified regular expressions. The
Unix shell tool, grep (that is cgrep, fgrep, egrep) [Wu and
Manber, 1992] support the extraction of text in artifacts
matching the specified regular expressions. These tools
are restricted to searching and return lines from the
system artifacts and none of these tools provide a
support for identifying the text parts matched to particular
parts of the regular expression. The tools also not support
the execution of actions when matches are found, and
also restrict their use for source code model extraction.

In the awk text scanning language [Aho et al., 1979],
the lex generator [Lesk, 1975] and perl scripting language
[Wall, 1990] support the execution of code written by the
user when text is matched to specified regular
expressions. The sgrep [Bull et al., 2002] mixes regular
expressions matching and querying. The use of these
tools for source code model extraction lacks the support
for specifying prioritized hierarchical collections of regular
expressions for maintenance tasks.

Consider the variety of design information in the

artifacts of the two-example software systems – Mozilla
1

system and the Apache system. These two systems were
chosen as examples for three reasons. First, the artifacts
comprising the system are publicly available. Second, the
systems are implemented in different programming
languages; Mozilla is implemented primarily in C and C++
(use also HTML, XML, Java scripts), and Apache is
implemented primarily in C. Third, the systems are of
moderate size with Mozilla comprising about 3005511
lines of code, and Apache comprising about 346807 lines
of code.

Each system is comprised of a variety of artifacts.
Some artifacts, like files data items, are found in both
systems. Other like classes, functions, structures, dep-
ends on the programming languages which are used to
implement the systems. A design artifact can be a logical
view [Bull et al., 2002] of a system, which is an object model,
when an object-oriented method is used. The design

artifacts defined for the system is not limited to identifiable

1 The Mozilla M8 and Apache 2.0.43 source code is used in this study.

pieces of the static system artifacts, but may extend to
the system's dynamic state during execution. In Mozilla,
for instance, which is designed as several intercommuni-
cation of C, C++, Java and scripts processes, a process
may be considered as a design artifact. Similarly, a
variety of interactions or relations may occur between the
artifacts. The artifacts relations are not limited to static
properties of the system artifacts but extend to dynamic
relations as well. For instance, in Mozilla interactions and
events related to the user interface flow through Java
scripts and are handled either in source code or in a
script. More options normally specify command handlers,
which flow through Java scripts to C++ and from C++ the
handlers may drop through directly to C. Table 1 shows
the artifacts extracted from the zip source code and the
times taken to extract the artifacts using our custom-build
DRT tool. The tool is also used in different studies at
different levels of abstraction for artifact recovery.

CASE STUDIES

The following case studies are conducted to recover

varying levels of details of artifacts at different levels of

abstraction for maintenance:

1. Zip and unravel codes: Artifacts recovery (functions,
unction calls, structures, enumerations and abstract
artifacts are extracted and abstract patterns are designed
to extract these artifacts).
2. Mozilla HTML parser: Recover the design artifacts to
access the feasibility to reuse it.
3. Design recovery tool (DRT): The functional artifacts
(example, use cases, scenarios) are recovered for
maintenance.
4. Email System: The functional artifacts are recovered to
understand and perform the maintenance task.
5. Mozilla: Architecture recovery for maintenance
purpose.
6. Apache: Recovery of conceptual architecture.

Case study to recover the design artifacts

The task is to develop an HTML parser, which is a part of
current software development project. Two options are
considered regarding the HTML parser, one is to design
and implement the parser from the start, and another is to
reuse the existing HTML parser. But it is decided to reuse
the Mozilla HTML parser by performing the changes
according to the requirement because the design and
implementation is required for new development and the
development team has no experience of such an imple-
mentation. The task facing the engineer is to recover the
design artifacts to gain an understanding of the design
and functionality to assess the feasibility of reusing the
Mozilla HTML parser with an existing development in a

specific time. The engineer must first extract the design
artifacts comprising the HTML parser from the source
code and the available documentation to reuse the parser
in the application. The Mozilla system is comprised of
about 3,005,511 lines of code; it is difficult for an engineer
to recover the design of the system directly from the
source code.

First engineer forms a high level model suitable for
recovering the design artifacts and to reason about the
task. For instance, a high level model may be an object
diagram or it may be an informal sketch of the calls
between system modules. The high-level models are
developed using the domain knowledge, personal
experience, application users, available maintenance per-
sonnel’s, existing source code and available documents
(specifications, designs, manuals). The high level model
is formed by collecting the available system artifacts from
several available sources like source code, design
documents, specification documents, experience and the
developer/user knowledge.

The software engineer identifies the entities using the
available information, and then associates them through
arcs and labels the arcs to mark the flow of specific
information from one entity to another entity. For example
the engineer initially identify the entities parser, token, tag
and scanner to develop the high level model of Mozilla
HTML parser through his experience and knowledge
about the domain. The software engineer maps these
entities to the source code and the documents to
associate the entities and sub-entities with them to
develop the high level model iteratively.

Sources

The sources used to develop the high level model for
maintenance activities are the artifacts collection, system
knowledge, existing documents reviews, identification of
goals and visual model. A high level model entity defines
a concept and is used to represent higher abstraction
level of components/modules, data sources and
processes in a domain. The entities of the high level
model associate the physical (files and directories) and
conceptual entities to the source code and documents.
The association of entities is done through mapping to
source code and documents iteratively. The source code
models are extracted by mapping the entities of interest
to the source code, which represent the domain
information, functions and association among the
components/modules, classes, data sources and
processes implemented in the source code.

Artifact collection: The collection of artifact of the

subject system is an essential step in reverse

engineering. The higher -level abstractions cannot be

constructed and explored without the raw data because it

Table 1. Extracted artifacts from zip source code.

Extracted artifacts from zip source code Time taken (MM:SS) No. of artifacts extracted

Function names 00:06 170

Function calls 00:01 665

Structures 00:01 15

Enumeration 00:01 2

Include files 00:00 40

is used to identify the system's artifacts and relationships.
The users should be able to indicate what artifacts they
want to collect from the subject system, how (and when)
they want this data collected and how they wish to
represent it. This suggests that process must facilitate the
integration of artifacts from other information and it should
support incrementally as well.

For example, the traditional approach to collect the
artifact in a reverse engineering system for design
recovery is to parse the subject system's source code
and extract complete abstract syntax trees with a large
number of fine-grained syntactic objects and depend-
encies. The user should be able to highlight important
artifacts and relations in the collected artifacts and de-
emphasize or filter out immaterial ones. This functionality
is not just important from an aesthetic point of view, it
also a matter of scalability. For very large systems the
information generated during the reverse engineering is
prodigious. Simply presenting the user with ream of data
is insufficient; knowledge is gained only through the
understanding of the data. In a sense, a key in design
recovery is deciding what information is material and
what is immaterial: knowing what to look for and what to
ignore. There are several artifacts in any software system
like the source code, design documents, specification
documents and the developer knowledge/experience that
are of vital importance for the reverse engineering effort.
These are gathered together in an effort to build the
knowledge for the software system. Other available
documentation consists of the program maintenance
manual and the user’s manuals are also the important
source for this activity.

System knowledge: For successful recovery of design
artifacts, the data must be in a form that facilitates
efficient storage and retrieval, permits analysis of artifacts
and relationships, and reflect the user's perception of the
system's characteristics. By adding narrative information
describing the system functionality and purpose, and
produces more appropriate documentation under the
constraints imposed by the computing environment, the
generated reports, the input and output files and the user
interfaces improve the system knowledge. The
descriptive information can be obtained from existing
documentation and from knowledgeable system mainten-
ance personnel (if available). The external interfaces can
come partially from documentation and knowledge but

must be validated against the results of source code. The
interfaces that are known can be defined and additional

interfaces could be added to the system context as they
are found. The system knowledge actually grows as the

process proceeds through the system.

Existing documents review: Design may be difficult but
reconstructing and effectively re-documenting the design
of the existing system is even more difficult. Recognizing
the abstractions in the real world system is as crucial as
designing adequate abstractions for new ones. This is
especially true for legacy systems written 10 - 25 years
ago, which are often in poor condition because of
prolonged and sometimes dramatic maintenance.

As the software evolves, the design documentation is
left untouched while the implementation drifts farther and
farther away from the original designer's intent. The
traditional approaches to program documentation when
applied to legacy software systems suffer from three
major flaws: the documentation produced is in the small,
usually out-of-date and provides a single perspective. For
large legacy systems, the design artifact of the structural
aspects of the system’s architectural is more important
than any single algorithmic component. The design
documentation that does survive for legacy software
systems was probably written during the software's initial
design; rarely does it accurately reflect the current
implementation. If software documentation exists for
these systems, it is usually in the small, typically
describes the program at the algorithms and data
structure level.

The maintenance logs (assuming these documents
exist), comments in the source code and the original
design documents are the available source of documents
for maintenance. If these documents are created and
maintained, it provides just a single perspective: that of its
author for particular task. Finally the available
documentation is often scattered through out the system
and on different media.

In the absence of accurate documentation, the reverse

engineers are required to construct a description of what a

system does given only a description of how it does it. The

existing documentation may be the only starting point from

which the application can be appreciated. This step involves

a review of the existing documentation. The output of this is

a functional description of the system with out mentioning

the implementation details or programming

Map To Files

\sCToken\s C:\TestedData\Mozilla8\HTMLParser *.*

\sParser\s C:\TestedData\Mozilla8\HTMLParser *.h

Figure 1. Mapping entities to HTML Parser Code.

language. It begins with a short summary of the overall
system behavior. The description is top-down; it proceeds
from a discussion of the overall system behavior to a
discussion of those sub-components that are visible to
the user. The Components that exist only as the result of
a specific implementation strategy are not described.

Identification of goals: It is important to identify the
goals and limitations of the effort before beginning the
reverse engineering activity. The reverse engineering of
huge and complex could be limited to the extraction of the
architectural design from the source code. For example a
re-engineering effort might entail the adoption of a
process to define the feature level abstraction of the
system functionality. Reverse engineering is always a
time bonded activity and a clear definition of how far to
go, as a trade off against the cost involved is necessary.
The effort is also expected to be iterative and
incremental, and could potentially lead to a bigger and
more complex artifact than the source code. It is therefore
important to keep the “big picture” in mind and focus on
predetermined goals. The documentation available for the
software system, the nature and size of the source code
itself, and suggestions and ideas from the system experts
or developers would be the inputs to develop such
milestones.

Visual model: The understanding achieved at the end of
the reverse engineering effort requires a visual modeling
medium to communicate it. A suitable modeling tool can
be chosen that supports the software system being
reverse engineered. For example the Unified Modeling
Language (UML) can be used as a visual modeling
medium [Kruchten, 1995], the UML has become the de-
facto standard adopted by the software industry to
visualize and communicate a software system design.

In the second step of this study, history facts
(comments - which are buried in the source code) are
extracted from the available source code, which
represents the system truly. The history facts help to
identify the main and sub-entities of the system and the
functionality of the system it performs.

The available documents exist in many formats and

have specific objectives to represent the systems. These

documents (example, specifications, design documents
and manuals) are also drifted away from the existing
implementation (then actual available source code) and
do not represent the system truly. The entities are also
mapped to the documents (if electronically available) to
identify more descriptions about their functionalities in the
system. This step also helps to build the knowledge about
the entities of the system in more details and their
relationships among them.

Mapping

The mapping step associates the entities with the
available source code and documents through mapping
iteratively. The mapping is performed using the regular
expressions. It allows the engineer to define the mapping
patterns of its own choice required by the tasks to map to
the source codes of multi-languages, different
dialects/scripts, incomplete source code or contain errors.
Initially the identified entities found in the first and second
step are mapped to the source code. The identified sub-
entities are further associated with the lower level entities
through mapping, which constitutes the sub-entities of a
particular domain. Figure 1 depicts the map of CToken
and sPasrer entities to the HTML parser files.

The mapping associates the CToken entity with all the
classes and functions of the HTML parser source code.
The result of this mapping is a source code model which
represents the relationship of CToken entity with other
artifacts (Classes and function) is depicted in Figure 2.

Source Code Model

The source code model is extracted by mapping the
entity to the source code, which represent the domain
information of this entity implemented in the source code
to perform some functions. The source code model also
represents the entity associations to the
components/modules, sub-components, classes,
functions and variables, which represent the low-level
implementation details of the source code. The source
code model also associates the entities with the
directories (in which relevant codes are organized) and
the files.

The following given below abstract pattern is used to

extract all the classes from the Mozilla HTML Parser
source code and the Figure 3 shows the extracted source

code model results.

Case study: Recovery of functional artifacts for

maintenance

A Design Recovery Tool (DRT) source code is used to

recover the desired Use Cases. The DRT is coded in

Figure 2. Result of mapped ctoken entity.

Figure 3. HTML parser classes.
Class | Deriveclass)
(((class)\s*(\w)+\s*\{) | -((class)\s*(\w)+\s*:\s*(Arg)*\s*\{)).

C++ and the purpose is extracting the design artifacts
form the source code. The process consists of main four
phases to recover the Use Cases: First the development
of high level model from the available documents and
source code, second using the high level model as a hint
to develop the mapping model. In the third phase source
code extraction is performed to extract the different
artifacts to form the different source code models
iteratively. Finally, in the fourth phase the required Use
Cases are constructed using the recovered artifacts.

The high level model used as hints and an engineer
then selectively investigate the aspects of the system
functions. Mapping models are developed to map the
identified actors, relationships with the source code.
Mapping the entities to the source code also identifies the
more relationships and the program flow and extracts the
reference formats (reports, menu, and interfaces). The
mappings are iteratively abstracted to extract the required
artifacts from the source code. The source code models
were computed and abstracted iteratively using the high-
level model entities (actors, use cases and relationships).
The mapping models are defined to develop the
relationships between different entities and it enhanced
the relationships between the models incrementally.

In the last phase a good understanding about the
functional aspects of the application is developed. The
Use Case diagrams and Scenarios are constructed from
the extracted and abstracted source code models. Each
Use Case is documented textually to provide more
understanding about its functionality. The abstracted
functional description is used to develop the different
scenarios and the relationships of different Use Cases. A
Use Case diagram at the system level is constructed to
represent the functionality of the system and more fine
grain Use Case diagrams and scenarios are developed to
further elaborate the functionality of the system. The
recovered Extraction Use Case is presented in Figure 4.
The Process aided in the recovery of the Use Cases by
identifying the Use Case artifacts (example successful
and failure Scenarios) discovering the relationships
(example, extend, contain), and generating abstractions
(example, Use Case diagrams) from the available
documents and the source code.

Case study of email system: Recover the design

artifacts for maintenance tasks

Mail system is a premier service of online direct e-
communication solution for enterprises. The functional
artifacts of the Mail system engineer are recovered and
the recovery involved the identification and extraction of
components from the existing system. First an
understanding of the mail system is required to perform
the maintenance tasks, how Mail source was divided into
modules and how these modules interact to perform the
particular tasks.

The process used by engineer consists of two parts.
First, the recovery of the functional artifacts is discussed
by considering the available source code, documents and
experience. The high-level model of the system is
developed and the engineer found it very useful and
natural to start the process. In the next step functional
model is developed starting with a short summary of the
overall system behavior. The developers comments are
also extracted from the source code with the help of tool
and summarized to further elaborate the details of the
functions the software perform. The source code models
are extracted iteratively by using the regular expression
patterns and mapping models further mapped the entities
according to the maintenance tasks to develop relations
(example, the inheritance, the class instances and
structures) between different entities.

The maintenance activities are required to recover the
functionality of the existing system to understand,
document and make decisions to implement the changes
in the existing systems. The software engineers recover
the functional artifacts (that is Use Cases, Scenarios,
Abstract functional descriptions) from the available
source code and documentation to perform the changes
in the software systems to meet the currents
requirements. The functional artifacts are developed by
extracting and using the information exists at the domain,
structural and implementation levels. The maintenance
activities require also the specific artifacts at different
levels of details to perform the maintenance tasks.

The Use Cases are recovered from the available
source code and the documentation using the Use Case
recovery process. The high level model is mapped to the
source code to extract and abstract the functionality of
the system. The developer’s documentation, reference
formats (menus, screens) and abstract source code
models are extracted using the mapping model. The
mapping models also provide more details of the
functionality of the system. The functional model is
abstracted iteratively and Use Cases are recovered.

In the source codes various types of files (example C,
Java, Scripts, text files) were extracted using the tools at
the required level of details as desired in the maintenance
tasks. The high level models are developed from the
source codes and available documentation to understand
and extract the required artifacts for the maintenance
tasks. The mapping is performed and source code
models are also developed which contain the relevant
information for the maintenance tasks iteratively and this
limited the scope of search for the desired artifacts.

Case study to understand and recover the

architecture

This case study presents the recovery of conceptual

architecture of the Apache web server. The Apache is

Figure 4. Recovered extraction use case.

selected for this study for two reasons. First, the
architecture of Apache was not documented before its
implementation, though Apache is based on voluntary
contribution from developers. The conceptual architecture
of software is often built before the software is
implemented. This is not the case for Apache, which does
not have a documented conceptual architecture. Second,
the Apache source code is publicly available for use and
experimentation and has undergone numerous revisions
since its first release in 1995. The architecture of Apache
is recovered in this study is based on the source code for
Apache 2.0.43. The current Apache web server has the
same architecture with more functionality added to it
through modules.

The first step in the recovery process begins with the
formation of the high level model of the Apache web
server representing the entities of the system. The high
level is developed from the existing available
documentation and to recover the comments from the
source code. In the second step, more functional
description is developed by using the hints provided by
the high level model and mapping to the source code.
This created many relations among these artifacts. The
different mapping models are defined using these
relations and mapped to the source code models for
further understanding and organization of the relations
among the artifacts. The iterative process made possible
to map the high levels information to the source code in
an incremental fashion and build the architecture model
for the recovery process.

Another study is conducted to understand the

architecture of Mozilla application using the available

documentation and Mozilla source code. In the first phase
the high-level model and functional model is developed
from the available documents and using the experience.
These available sources are used to extract the functional
description of the system and it start with a short
summary of the overall system behavior. It is found that
the core functionality of Mozilla revolves around XUL
(XML- based user interface language). XUL is an XML-
based language for describing the layout and component
of user interfaces and also use C++, Java Script and
HTML. XUL is used to describe windows and their
contents with application windows, such as the Mozilla
browser window. Actually XUL is used to define every
aspect of the windows user interface, from its menus to
its toolbars to its status bars. The user interface is
configurable through markup, it is not hard coded in the
source and basically, it is loaded at runtime enabling
programmers to tweak the interface without having to
recompile the source code. XUL makes the user interface
dynamically configurable.

In the second phase of this study, the source code
models and comments are extracted. In the extraction
phase, the tool is used to extract the developer’s
documentation, functions, classes and flow of control
from the source code. The developer’s documentation
provided knowledge about the components that
implement the structure of the application. Several
modules are identified by exploring the source code with
tool, and find many relationships by using the domain
entities. Mapping the entities to the source code is also
found to be the best technique to understand the relation
and the program flow and extract the reference formats

(reports, menu, and interfaces). These documents are
also scanned thoroughly for clues about the critical
modules in the application.

In the third phase, a good understanding about the
functional aspects of the application is developed. The
Use Case description is built for the system from the
available documents and by building a Use Case diagram
at the system level and by providing fine grain Use Case
diagram wherever necessary. Each Use Case is
documented textually to provide more understanding
about its functionality. It is revealed that application core
implements the core functionality for application
components and application services process XUL. The
C/C++ source code serves as the basis for an object
class, which defines core functionality and services.

In the next phase, the mapping process is performed to
map the high- level and functional model to the source
code model to consolidate all the models. All the models
are reviewed again in the light of the goals specified
during the start of the study. The class nsIAppRunner is
mapped to the source code files are depicted in Figure 5.
The recovered class CHTMLToken relationship with the
source files is depicted in Figure 6. During this phase
many additional relationships and corrections are made
to the constructed models.

In the last phase, the architecture model is abstracted,
and abstracting the architectural description is an ongoing
process throughout the study. The static architecture of
the system artifacts is identified in the beginning and
incremental changes are made as more information is
learnt. However component diagrams are developed in
UML and the relationships among the components are
visually represented by a dependency relationship
between them.

The result of this study project is a layered Mozilla
architecture that correlates all the knowledge gained at
different levels of abstraction. The models for the desired
tasks found very useful for the purpose of dealing with the
real complexity of the details of source code and textual
descriptions (comments). The recovery process helps to
limit the scope of exploration to understand the system
and enables to abstract it without getting lost in the
complex code.

The case studies recovered the varying details levels of
artifacts to develop the architecture. In the first study the
available documentation and source code of Apache is
used to recover the architectural decisions, rational and
the causes which force the software engineers to adapt
the particular type of architecture and the style. The
recovered conceptual architecture helps to understand
the rational and causes which force the initial system
developers and the engineers to perform the changes in
the system in a particular fashion to meet the current
requirements. A layered Architecture of the Mozilla is
recovered in the second case study to understand the
system for maintenance. The artifacts extracted at
different levels of abstraction to develop the high level,

functional, source code, mapping and architectural
models from the source code and available
documentation to identify the relationships and abstract
the artifacts to recover the architecture. The complex
hidden relationships exist in the source code were
abstracted using the domain, functional, structural and
implementation information.

FACTORS

In the case studies, it is identified that the reverse

engineering process recovers the system artifacts at

different levels of abstraction and depend on the following

factors.

1. Artifacts for maintenance: The maintenance activities
require the artifacts; the engineers have specific goals for
maintenance tasks in hand. What type of artifacts are
required and at what level of abstraction? The artifacts
exist at the domain, functional, structural and
implementation levels. The artifacts at implementation are
the files, libraries or directories which contain the
particular source codes and describe the relationships
between them at this abstraction level. The structural
artifacts are the design documents, architectures,
processes and at the functional abstraction level the
artifacts describe the functionality of the system that is
Use Cases, Scenarios and other documents. The domain
abstraction further comprehends the functionality and
logic of the application and the external knowledge about
the particular domain.
2. Available source code and documentation nature: The
available source code, textual descriptions or existing
available artifacts (that is architectures, design diagrams,
functional specifications) are used in the reverse
engineering process. The existing artifacts and
documents does not represent the implementation
(source code) due to the changes performed in the past
in the source code to achieve the required functionality
and the source code is drifted away from the existing
documents.

The source code also exists in many forms. A source
code may be written in different programming languages
or have different dialects, scripts or may have errors or
incomplete and cannot compile. The size of the available
source code may be large and implemented in different
times using the different types of designs and concepts.
3. Extraction of artifacts: The reverse engineering process

requires to extracts the artifacts at different levels of

abstraction for reverse engineering activities. The extraction

heavily depends on the nature of available source code and

existing documentations and artifacts require for the

maintenance tasks in hand. The required artifacts

specifications are mapped to the source code and the

existing documents to extract the artifacts for maintenance

tasks. The extraction of artifacts also depend

Figure 5. Class CHTMLToken relationship with source files.

Figure 6. Mapping of nsIAppRunner to source code.

on the require artifact specification and mapping process.
4. Artifacts abstraction: The extracted artifacts are also

required to abstract at the certain levels for maintenance
activities. The extracted artifacts are abstracted at the
domain, functional, structural and implementation levels.
For example, the functional description is extracted from

the available source code and Use Cases, and then
scenarios are abstracted from this functional description.
The artifacts abstraction also depends on the extracted
information and at the levels of abstractions.
5. Presentation of artifacts: The reverse engineering

process also requires presenting the artifacts in a specific

User Specifications, Mappings and Inputs/Outputs

Patterns Mappings

Actions Inputs & Outputs

Analysis Other Tools I/O

Presentation

Available

System

Artifacts

Abstraction

Extraction

Figure 7. High-level reverse engineering process.

format or diagrams (that is UML diagrams) at different
levels to perform the maintenance tasks in hand. In
forward engineering many development processes exist
are in practice. The software engineers are trained and
the preference is to use these processes and present the
system artifacts in these formats and diagrams for
different maintenance activities.

REVERSE ENGINEERING PROCESS ELEMENTS

The following reverse engineering process elements are
identified in the case studies. The Figure 7 depict the high
level process view of reverse engineering used for
maintenance tasks to recover the artifacts at different
abstraction levels (Domain, Functional, Structural and
Implementations) [Nadim et al., 2002; Nadim, 2002;
Nadim, 2003; Nadim and Muthu, 2005; Nadim, 2007].

1. Extraction: The process requires extracting artifacts
from different levels of abstraction from the available
source code and documents.
2. Abstraction: To produce the required artifact(s), the
abstraction is performed and presented at the higher
levels of abstraction for maintenance activities.
3. Presentation: The artifacts need to be presented in a
particular format or design to meet the maintenance tasks
requirements.
4. User specification: The user specifies the required
artifacts specification for the maintenance tasks in hand.

The extraction, abstraction and presentation of artifacts
are performed on the available source code and
documents.

5. Mappings: For extraction, abstraction and presentation
of artifacts mapping is required from artifacts, source
code or documents. The mapping is performed at all
levels of abstraction to extract, abstract and present the
artifacts.
6. The input in the process is available source code,

documentation and domain knowledge to extract,

abstract and present the artifacts (outputs) in particular

format or design at different levels of abstraction.

REVERSE ENGINEERING PROCESS FEATURES

The reverse engineering process requires the following

features to recover the artifacts at different levels of

abstractions for the different maintenance activities.

1. Iterative: The artifacts for the maintenance activities
can be recovered iteratively and incrementally and refine
until the desired artifacts are obtained.
2. Partial: The process can be tailored according to the
required artifacts for the maintenance tasks in hand and
irrelevant artifacts and details can be ignored.
3. Lightweight: Not all the system artifacts and details are
required and some may be required to ignore. The user
can recover the artifacts of their interest required for the
maintenance task in hand.
4. Scalable: The process require to recover the artifacts
from the software systems which exist in the range of
small to large in different languages which may consist of
thousands to millions lines of code. The available source
code and documents, which exist in different pro-
gramming languages or dialects and scripts, can have

errors or incomplete.
5. The artifacts exist at domain, functional, structural and
implementation levels. The artifacts recovery at all these
levels must be supported by the process for the
maintenance tasks at hand.
6. User specifications: The artifacts exist at domain,
functional, structural and implementation levels of
abstraction. The user specifies the artifacts specifications
of the required artifacts for the maintenance task in hand
are mapped to the available source code or
documentation. The user specified artifacts are extracted,
abstracted and presented at different levels for reverse
engineering activities.
7. Mapping: The artifacts specifications are mapped to
the available source code or documents to extract,
abstract and presents the required artifacts at different
levels of abstractions.
8. Adaptable: The artifacts exist at different levels of
abstractions required for maintenance activities to extract,
abstract and present the artifacts in user formats and
design diagrams. The engineers always have resources
and time constrains for these different types of
maintenance tasks.
9. Integration: The reverse engineering activities extract,
abstract and present the different types of artifacts. The
process requires integrating the tools and may use
different types of user scripts for extraction, abstraction
and presentation of particular artifacts.
10. Measurable: The quality attributes of the recovered
artifacts are required to measure the completeness,
correctness, and artifacts levels of details (specifications,
design diagrams) by the engineer for maintenance task at
hand to assess and improve the reverse engineering
process.
11. Forward Engineering: The changes in the
development trend and the adoption of agile processes in
practice put less stress on design documentation. The
reverse engineering process require to recover the
artifacts and present at higher levels of abstractions for
different (that is abstract and recover the artifacts)
purposes in the development processes.

Conclusion

The software systems evolve with the time and the
maintenance activities are performed to meet the user’s
requirements. Reverse engineering activities present the
system artifacts at the higher levels of abstractions and
these artifacts exists at different levels of reverse
engineering abstractions (domain, functional, structural
and implementation). The software engineers have the
resources and time constrains to recover the artifacts for
the maintenance tasks at hand.

The artifacts are recovered at different levels of

abstraction for maintenance tasks and the process

depends on the artifacts required for the maintenance,
available source code and documentation, extraction,

abstraction and presentation of artifacts factors. The
process has the elements and require to recover the
artifacts are the extraction, abstraction, presentation, user
specification, mappings and inputs/outputs. The process
must have the iterativeness, partial, light weight, scalable,
abstraction level support, user specification, mapping,
adaptable, extendable, integration, support the forward
engineering development process and measurable
features to recover the artifacts at different levels of
abstraction in varying required details for reverse
engineering activities.

REFERENCES

Acacia (2002). AT&T Laboratories. Available

from:<http//www.research.att.com/~ciao
Aho A, Kernighan B, Weinberger P (1979). Awk- A Pattern Scanning

and Processing Language. Software-Practice and Experiencer 9(4):
267-280.

Barry WB, Victor R, Basili H, Dieter R, Marvin VZ (2005). Foundations
of empirical software engineering: the legacy of Victor R. Basili,
Springer Berlin Heidelberg.

Bull RI, Trevors A, Malton AJ, Godfrey MW (2002). Semantic Grep:
Regular Expression + Relational Abstraction. In Proceedings of the
Working Conference on Reverse Engineering (WCRE'02). IEEE
Computer. Soc. Press.

Burson S, Kotik G, Markosian L (1990). A Program Transformation
Approach to Automating Software Re-Engineering. In Proceedings of
the Fourteen Annual International Computer Software and Application
Conference. IEEE Computer Society Press, Los Alamitos, CA, pp.
314-322.

Cflow (2002). C Extractor Tool. Available from:
<http:/www.paranoia.com/~vax/cflow/ cflow.html.>.

Chikofsky EJ, Cross JH (1990) Reverse Engineering and Design
Recovery: A Taxonomy, IEEE Software, pp. 13-17.

Datrix (2000). DATRIX- Abstract Semantic Graph Reference Manual.
Ver. 1.4 edition, Bell Canada Inc. Montreal, Canada.

Dean TR, Malton AJ, Holt R (2001). Union Schema as a Basis for a C++
Extractor. In Proceedings of Working Conference on Reverse
Engineering WCRE' 01, October, pp. 59-67.

Easterbrook SM, Singer J, Storey M, Damian D (2007). Electing
Empirical Methods for Software Engineering Research. In Shull F
Singer J (2007). Guide to Advanced Empirical Software Engineering"
(eds), Springer.

Ferenc RB (2002) Data Exchange with Columbus Schema for C++. In
Proceedings of European Conference on Software Maintenance and
Re-Engineering (CSMR'02), March, pp. 59-66.

Flyvbjerg B (2006). Five Misunderstandings about case study
Research. Qualitative Inquiry, 12 (2): 19-245.

Holt RC, Winter A (2000). A Short Introduction to the GXL Software
Exchange Format. In Proceedings of the 7th Working Conference on
Reverse Engineering. IEEE Computer Society Press, Los Alamitos,
CA, pp. 299-301.

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El
Emam K, Rosenberg J (2002). Preliminary guidelines for empirical
research in software engineering. IEEE Transaction on Software
Engineering, 8(8): 21-34,

Kollmann R, Selonen P, Stroulia E, Systa T, Zundorf A (2002). A Study
on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering. In Proceeding of the 9th Working Conference
on Reverse Engineering (WCRE'02). IEEE Computer Soc Press, Los
Alamitos.

Kruchten P (1995). The 4+1 View Model of Architecture. IEEE Software.
12(6): 42-50.

Kullbach B, Winter A (1999). Querying as an Enabling Technology in

Software Reengineering. In Proceedings of Conference on Software
Maintenance and Reengineering (CSMR'99). IEEE Computer Society
Press.

Lesk M (1975). Lex- A Lexical Analyzer Generator. Technical Report 39,

AT&T Bell Laboratories, Murray, Hill, N.J.
Lutters WG, Seaman CB (2007). Revealing actual documentation

usage in software maintenance through war stories. Inform. Software
Technol., 9(6): 6-587.

Muller HA, Uhl JS (1990). Composing Subsystem Structures Using (K-
2)-partite graphs. In Proceedings of Conference on Software
Maintenance, San Diego, California, November, IEEE Computer
Society Press, pp. 12-19.

Nadim A (2002) Architecture Recovery. In proceedings of International
Conference of Information and Knowledge Engineering (IKE02), June
Las Vegas, Nevada, USA. CSREA Press, pp. 663-666.

Nadim A (2003). Reverse Engineering Methodology to Recover the
Design Artifacts: A Case Study. In proceedings of International
Conference of Software Engineering Research and Practice

(SERP03), 23
rd

-26
th

 June, Las Vegas, USA, CSREA Press, pp. 932-
938.

Nadim A (2007). Recovery of Architecture Artifacts. International

Conference on Software Engineering Theory and Practice (SETP-

07), Orlando. pp. 9-12.

Nadim A, Dixon M, Finlay J, Coxhead G (2002). Recover the Design

Artifacts. In proceedings of International Conference of Information

and Knowledge Engineering (IKE02), 24
th

 –27
th

 June, Las Vegas,
Nevada, USA, CSREA Press, pp. 656-662.

Nadim A, Muthu R (2005). Recover the Use Case Models. In
proceedings of International Conference of Software Engineering

Research and Practice (SERP05), 27
th

 -30
th

 June, Las Vegas, USA,

CSREA Press.
Robert KY (2009). A Case Study Research: Design and Methods.

Fourth Edition. SAGE Publications. California.. ISBN 978-1-4129-
6099-1.

Wall L (1990). Programming Perl. O'Reilly & Associates, Sebastopol,
CA

Wu S, Manber U (1992). Agrep-A Fast Approximate Pattern Matching
Tool. In Proceedings of the USENIX Winter 1992 Technical
Conference. USENIX, Berkley, CA, pp. 153-162.

Zelkowitz M (2009). An update to experimental models for validating

computer technology. J. Syst. Software, 82 (3): 73-376.

