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Some mathematical properties of nonlinear system associated with an HIV- Immune dynamic model will be 

given. The considered model will be solved numerically. The numerical method permits the examination of the 
behavior of the dynamic system on long -term. In the same time, it is easy to implement, fast convergent and 
has a very competitive stability results. Numerical results demonstrate the effect of improving the function of 

the thymus on the viral growth and T cell population. 
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INTRODUCTION 

 
Acquired Immune Deficiency Syndrome (AIDS) is a viral 
disease. It suppresses the immune system and elimina-tes 
the body's ability to increase an immune response by killing 
helper T cells (its target). The T cells are able to fight this 
invasion for a period of time, but eventually cannot oppose 
the violently aggressive attack. As a re-sult, the immune 
system becomes less effective in fighting. As the disease 
progresses, the body becomes unable to defend itself 
against any infections such as pneumonia. The virus, which 
causes AIDS, is the human immunodeficiency (HIV) virus.  

Recently, mathematical immunology has been advan-ced 
dramatically. The aim of mathematical immunology is to aid 
understanding of the complexities of the immune system 
response through mathematical modeling. Mathe-matical 
models enable us to verify the role of various interactions of 
individual elements within the frame of the function of the 
whole immune system. These models may be lead to 
different situations with different interpreta-tions, which can 
be helpful to clinicians.  

This paper, consider the model that describes the 
population of HIV virus and its target T cells. It has been 
used extensively, see e.g., (Kirschner, 1996; Perelson et al., 
1993; Prikrylova et al., 1992) and the including refe-rences. 
However most of these studies, appear to give no details 
about the utilized numerical methods 

The examination of the long-term behavior of a dyna-mic 
system is necessary. While, using small time step size 

requires extra computing costs. So, it is essential to use a 
numerical method that allows the largest time steps. 

 
 
 

 
This work considers an existing model (Kirschner,1996) 

concerned with the dynamics of HIV- Immune interaction, 
with slight modification. The solution of this model is uni-que, 
depends on the initial data. In the case of uninfected 
individual, there are no points of singularity and the criti-cal 
point is stable. While for the case of infected indivi-dual, the 
solution posses two critical points.  

Four schemes are investigated to present a compara-tive 
study for solving HIV-immune dynamic model, name-ly linear 
implicit finite difference method, nonlinear implicit finite 
difference method, Euler method and Runge-Kutta method. 
The numerical comparisons were carried up to test the effect 
of time step size on the behavior of these methods. It was 
shown that the linear implicit finite differ-rence method is 
much better, in terms of numerical con-vergence, than the 
other methods. It permits the exami-nation of the behavior of 
the dynamic system on long-term. The novelty of the implicit 
difference scheme to be developed in this paper is that it is 
easy to implement, fast convergent and has a very 
competitive stability re-sults.  

Numerical results demonstrate the effect of improving 

the function of the thymus on the viral growth and T cell 

population. 

 
HIV-immune dynamic system [1, 3, 7 - 10] 
 
The typical T-cell lymphocyte, originate from the hemo-

poietic stem cells in the bone marrow. A population of 

lymphocytes then passes through the thymus gland to 
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take their T cell education. Then they become mature T 
cells. Most of them home to the lymph nodes and spleen, 
other circulate in the blood stream. Normally T cells are 
produced at a uniform rate. When the body detects a 
need for T cells to fight an infection, additional T cells are 
created by proliferation. Even after thymes involution the 
thymus remains functional (www.HealthyImmmunity.com; 
www.aidsinfonet.org). Increases in T cell count is consi-
dered as a sign of immune restoration in the case of da-
mage done to the immune system by a foreign sub-
stance. T cells live only for a finite period of time.  

The mechanism of HIV infection is as follows: Like most 

viruses, HIV is a very simple RNA virus. It binds to CD
+
4 

(marker of T cell) molecules on the surface of T cells. The 
virus then invades the cytoplasm of the T cell. By means 
of its reverse transcripts gene, the HIV virus synthesizes 
a homologous DNA copy and inserts itself into the host 
cell's DNA. The virus then produces copies of itself. So, 
the outcome of an HIV' infected patient is an interplay 
between load and rate of proliferation of HIV virus, rate of 
proliferation of T helper cells, rate of prolix-feration of 
infected T helper cells and other members of the immune 
system. As the disease progresses, the number of T 
helper cells declines and the body becomes unable to 
defend itself against any infections. 

 

Mathematical model 
 
The present model (Elsady, 2002) considered as a slight 
modification of that (Kirschner, 1996). It represents the 
interaction of HIV and the immune system response. The 
model consists of three differential equations, which 
describe rate of changes in "T" the uninfected T helper 

cells population, "T
i
" the infected T helper cells popula-

tion, and "V" the virus population that lives freely in blood. 
The basic equations of the model are 
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In equation (1), (t) represents the rate of generation of 

new helper T cells from the thymus, bone marrow, or 
other sources in the presence of virus. The T cells have a  
finite life span with a death rate T, so the second term 

 
  

 
 

 

represents natural death of uninfected T cell. The third 
term represents normal proliferation process of T cells 
with rate T.  

In equations (1) and (2), the term kVT(t)V(t) represents 
the rate that free virus infects new healthy T helper cells. 
After a T helper cell becomes infected, it becomes T 

i
 cell 

and hence the k VT(t)V(t) term is subtracted from (1) and 

added to (2). kV is the kinetic constant for the infection 
rate  

While in equation (2), the infected T
i
 cells are assumed 

to have a death rate T
i
 or destroyed during the prolife-

ration process according to Michaelis- Menten mecha-

nism. T
i
 is the maximal proliferation rate and c is the half 

saturation constant of the proliferation process  
Equation (3) models the free virus population. The first 

term on the right hand side is the source for virus popu-
lation, where n is the average number of viruses released 
per infected cell before it dies. The second term repre-
sents partial clearance of virus from the blood by specific 
immune response, e.g., antibodies, natural killer T cells 
and cytotoxic T cells, where V is the rate of the process. 
The third term, represents release of virus from other 
infected cells (such as macrophage and other cells). The 
growth rate of this process is g, and the half saturation 
constant is b  

Equations (1) - (3) together with the initial conditions (4) 
represent the initial value problem, which represents the 

dynamic interaction between HIV and the immune 

response. 

 

ANALYSIS AND RESULTS 
 
For convenience equation (1) will be rewritten in the form 
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where     (t)  T ,   T 
T
 , Tmax  denotes T cells' 

 
max  

maximum possible population, called equilibrium level, 
which cannot be exceeded by the organism. 
The initial value problem, equations (2), (3), and (5) 

together with the initial conditions (4) can be written in 

compact form as 
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T (0)  T0 , T 
i
 (0)  0 and V (0)  V0 . 

 
ƒ and its Jacobian matrix: 

 
 
 
 

 

Ts  should be less than Tmax . 
 

For t 0, problem (7) is well posed and has a unique 

solution 
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This solution depends on the initial conditions and has no 

point of singularity. While the solution 
 

Ts   2
1
   

2
4 

 

 

is a stable equilibrium solution. 

For a healthy individual and in mm
3
, the realistic value of   

are defined and continuous t 0. By standard results 

(Sundaram, 1996), problem (6) is well posed and posses 
unique, continuous, positive and uniform ally bounded 
solution. Therefore, the considered model is reasonable 
in the sense that no population goes negative and no 
population grows unboundedly. This solution dependent 
on the initial conditions. 
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Case of uninfected individual 

Equation (1) can be rewritten in the form 
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where  f (t,T (t))    T (t)  T 
2
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conditions T (0)  T0 .   
 

 

This model gives realistic population dynamics 

(Perelson et al., 1993) under the assumptions: 
 

  0, T Tmax   0 and the steady state population size 

 
the parameters is 
 

  10, T   0.02 / d,  T   0.03 / d , Tmax   1700

 

Note that the fractionation, which is not accepted 
biologically, will be used to unify the unit of volume (mm³). 
 

Figure 1 shows that in the absence of any infection, the 

steady state concentration of T cells would be 1100 cells/ 

mm³ after a period of 100 days for different initial count of 
T cells. 
 

 

Numerical schemes and comparison (Elsady, 2002) 
 

Let {xn | n = 0, 1, 2, ...} represents an approximate 

solution to x(t) solution of the non- linear ordinary 
differential equations of the model at a discrete set of 

points {tn | n = 0, 1, 2, ...} and is the time step size. The 

proposed two discretization methods of the non-linear 
ordinary differential equations is as follows: 
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Figure 1. Steady state concentration of T-cells in the absence of 

any infection. 
 

 
Table 1. Initial values 
 

   Dependent variables          Values 
 

  T0 = initial count of T cells population     1000 cells /mm³ 
 

  Tax = maximum concentration       1700 cells /mm³ 
 

  T
i
0 = initial count of infected T

i
 cells      0 cells /mm³ 

 

  population                    
 

  V0 = initial count of infection population    0.001 virus/mm³ 
 

Table 2. Parameters values               
 

               
 

   Parameters and constants        Values 
 

  S = source of new T cells           10 cells /day 
 

  T = death rate of uninfected T cells      0.02 / day 
 

  T
i
 = death rate of infected T cells       0.5 / day  

 

  T = death rate of virus due to other      7.410
-4

  / day 
 

  sources                      
 

  T =normal proliferation rate of helper T    0.003 / day 
 

  cells                      
 

  T
i
 = the maximal proliferation rate of      0.002 day 

 

  infected cells              

2.410
-5

 
  

 

  kV = rate of T cell becomes infected by       
 

  free virus                    
 

  n = number of virus produced by each      1000    
 

  infected cell                   
 

  c = half saturation constant of the       100     
 

  proliferation process            viruses/mm
3
 

 

  g = growth rate of external viral source     0.1/ day  
 

  other than T cells             

15 viruses/mm
3
 

 

  b = half saturation constant of the viral      
 

  source                      
 

Linear implicit method (LIM)            
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The terms of the present model are similar to that of the 
model in (Kirschner, 1996). Therefore, the initial values 
for the dependent variables and the parameters are 
chosen to be as in Tables 1 and 2. Also, the fractionation, 
which is not accepted biologically, will be used to unify 
the unit of volume (mm³). 

 

Comparison 
 
Now, the numerical comparisons will be given to test the 
effect of time step size on the convergence of Euler, se-
cond order Runge-Kutta, NLIM and LIM methods. The 
results are summarized in Table 3 for different choice of 
time step .  

The failure of Euler method and second order Runge-

Kutta method occur when 1.2, and 2.5 respec-  
tively. While the successful of NLIM is up to = 37 and for 
the LIM for any step size. The failure of both Euler and 
RK2 methods is due to overflow in computation, while the 
failure of NLIM is due to Newton's method failed to 
converge to the prescribed accuracy after 15 iterations. 
Therefore, from Table 3, the LIM method has a much 
better behavior than the Euler method, Runge-Kutta 
method and the NLIM method. It permits the examination 
of the long- term behavior of a dynamic system by using 
a larger time steps. The LIM is easy to implement and 
fast convergent. 

 

Effect of improving thymus on the count of T cells 
 
It is assumed that there is a deterioration of these 

sources as the viral level increases during the course of 

HIV infection. By taking 
 

1 V (t) 
S   (t)  S, 0    1  

 

1 V (t) 
 

    
 

 

Figures 2 and 3 illustrate the effect of thymus on the 

quality of life for an infected individual. As the thymus 
function well, there is a longer period before the complete 

deterioration of the T cells. 

 

Summary 

 

In the absence of any infection, there is steady state 
concentration of T-cells depends on the initial count of T-
cells in the body. By using the same mathematical model, 
the graphical pattern of other cellular members of the 
immune system (using the corresponding empirical num-
bers values of the immune cells studied) can be getting. 
The effect of thymus on the quality of life for an infected 
individual is clear. The numerical method permits the 
examination of the behavior of the dynamic system on 
long-term. In the same time, it is easy to implement, fast 
convergent and has a very competitive stability result. 
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Table 3. Effect of time step on the successful of the method. 

 

 Euler RK2 NMIM LIM 

0.1 Convergence Convergence Convergence Convergence 

1.0 Convergence Convergence Convergence Convergence 

1.1 Convergence Convergence Convergence Convergence 

1.2 Failure Convergence Convergence Convergence 

2.5 Failure Failure Convergence Convergence 

37 Failure Failure Failure Convergence 

100 Failure Failure Failure Convergence 

1000 Failure Failure Failure Convergence  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Count of T cells for = 0, 0.5, 1 is in red, blue, and green  

respectively,  where 
1   V (t) 

S .  Decrease  in  the  population  of 
 

1  V (t)  

  
  

normal T cells may be due to secretion of soluble substances by the 
virus that decrease the proliferation process of normal T helper cells.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Number of HIV virus for   = 0, 0.5, 1 is in red, blue, and green respectively, where 
1   V (t) 

S .  

1  V (t) 
 

  
 

Aggressive proliferation of the virus as the progress with time in the case of strong immune system.  
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