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INTRODUCTION 

 
Important studies on HIV/ AIDS include papers of 
Hazenberge (2000), Duffin and Tullis (2002), Tullis 
(2004), Tullis et al (2002ab, 2003), Oluyo (2007), Oluyo 
and Ayeni (2007), Stafford et al (200) and Wang and Li 
(2006). The hallmark of HIV disease is the gradual loss of 
CD4+ T cells, which ultimately leaves the immune system 
unable to defend opportunistic infections. Recent studies 
Hazenberge (2000) and Tullis (2004) suggest that CD4 + 
T cells are lost through infection and binding of gp 120 to 
uninfected CD4 + T cells. The envelope ultimately leads 
to the death of healthy cells. On the other hand, 
hemodialysis assists infected T cells to recover. The 
present study investigates the criteria under which the 
rate of recovery of infected cells through hemodialysis 
could lead to the stability of the equilibrium point. 
 
 
MATHEMATICAL MODEL 
 
We modify the model of Duffin and Tulis (2002) by incorporating 

recovery through affinity hemodialysis: 
 
 
Production 
 

 

S T rate of T-cell production from stem cells. 

k1 

T V  Ti  infection of T cells  
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k3   
 

P  T PT reversible gp 24 binding to normal T-Cells 
 

Ti + hemodialysis 
 

recovery of some T infected cells as a 
 

 T 
  

result of hemodialysis 

 
Clearance 
 

d1 

T  death of normal T cell 
d

2 

Ti    death of infected T cells  
c 

V  viral clearance rate, 

 
Where Ti is infected T cell, V is virus and P is concentration of 

gp120. 
 
Arising from above, the relevant mathematical equations are: 
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     d1T  k1TV   Ti , T 0  T0 
 

dt  
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 k1 TV  d 2Ti    Ti      , Ti 0  0  

dt 
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 k 2 Ti   cV , V 0  0  
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STABILITY OF THE CRITICAL POINTS 
 
To obtain the critical points, we set In infected free equilibrium 
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To obtain the infected equilibrium, we obtain 
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Also 0  k1TV  d2Ti    Ti  and  Substituting for V, we 
 

obtain                
 

k1T 
 k2Ti   

 d2   T1   0 
 

 
c 

    
 

                 
 

 k k 
2 
T        

 

i.e 
 1    

 d2    T1  0 
 

  

c 
   

 

             
  

 
 
 

 

Let us denote this infected equilibrium by  T*,Ti* ,V* 
 
each component corresponds to an earlier specified 

value. We let 
 

x  T  T* , y  T i   T i* , z  V  V * 

 
Then 
 

dx
dt  d1  k1 V* x   y  k1 

T* z 
dy

dt  k1 V* x  d2    y  

k1 T* z 
dz

dt  k2 y  cz 

 
Thus 
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y' = A y 

z' z 

 

Where; 
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Substituting for T and V in 
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gives Ti and subsequently V. 
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So, the un-infected equilibrium is   and the infected 
 

equilibrium is               
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Theorem 1  

If 


 d1    d2 c k1k2 there exist two equilibria. 

 

 

AI 0 
 

 
Implies 
 

p  
3
  

2
 d1 k1V* cd2  

 
 

 ck1V* d1d2 d2k1V*  k1V* 




 d1 d2 c  k1V* d2c c k1V*  0
 
 

 
Theorem 2 
 
Equation (3.1) has no positive root. 

 
 
 
 
 
 
 
 
 
 
 

 

3.1 



  
 
 

 
Table 1. Description of variables and constants.  

 

Terms Description Values 
   

 Rate of production of T cells dT0/day 

d1 Natural death rate of healthy T cells 0.01/day 

k1 Viral infection rate (CD4+Tcells) 0.00027/virus day 

 Infected T cell recovery rate /day 

d2 Death rate of infected T cells 0.39/day 

k2 Viral production for T cell 850/day 

c Clearance rate of the virus 3/day 
 

S Stem cell 
 

T Uninfected activated CD4+T cell 
 

Ti Infected CD4+T cells 
 

V Virus produced by T cells and macrophages 
 

PConcentration of pg 120  
 
 

 
Theorem 3 
 
Equation (3.1) has three negative roots or one negative root and 

two complex roots. 
 

 
Theorem 4 
 
The infected equilibrium is globally asymptotically stable. 

Routh – Hurwitz criteria (Wang and Li, 2006). All zeros of 
3
  

 
2
      0 have negative real parts if and only if   

0 .  
Therefore, all zeros of (3.1) have negative real parts if and only if 

 

 d1 k1 V*  cd2 ck1V* d1d2 d2k1V* 

 k1V*  d1 d2 c  k1V* d2c c  k1 V* 0 

 
That is, 
 

d1 k1V * d2 ck1V* d1d2 d2k1V*  k1V*   

d1 d2  d2k1V*   k1 V*   cck1 V*  k1 V*  0 

 
Proof of theorems 
 

Clearly all coefficients and the constants of  p are positive. The 
 
proof of the theorems 2 to 4 involved using the Descartes rule of 
signs: The number of positive zeros of a polynomial with real 
coefficients is either equal to the number of variations in sign of the 
polynomial or is less than this by an even number.Table 1 

 
 
 

 
 

Proof of theorem 1            
 

The infection –   freeequilibrium  isgiven  by 
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Proof of theorem 2 
 
The number of variations in sign is zero. Hence by Descartes’ rule 

of signs the polynomial equation has no positive root. 

 

Proof of theorem 3 
 
From p() in (3.1), we obtain  

p  
3
 

2
  d1 k1V* cd2  

 

  ck1V* d1d2 d2k1V*  k1V* 
 
 

d1d2c k1V* d2c  c k1V*   0 



 
 
 

 
So the number of changes in sign is 3. Hence by Descartes’ rule of 

signs, p() has either three negative roots or one negative root and 

two complex roots. 

 

Proof of theorem 4 
 
Since all the parameters are positive, the inequality holds. 
By theorem 3 and Routh – Hurwitz criteria (3.1) has; 
 
(i) Either three negative roots or  
(ii) One negative root and two complex roots whose real parts are 
equal and negative. So in either case the equilibrium is globally 

asymptotically stable. 

 

RESULT AND DISCUSSION 
 
The main purpose of this paper is to verify, beyond earlier 
papers, the effect of affinity hemodialysis on HIV/AIDS as 
a potential treatment option for HIV patients resistant to  
drugs. A key factor in this analysis is . When  is zero, 
the possibility of a quasi-steady infected equilibrium does 
not exist. Thus a stable infected equilibrium does not 
arise. This paper shows, further, that affinity hemodialysis 
is a potentially useful adjunctive therapy which can be 
employed to treat HIV-infected patients either directly or 
in conjunction with drug therapy (Tullis, 2004) 

 

ACKNOWLEDGMENT 
 
This revised version (medical and mathematical aspect) 

has benefited from thoughtful comments of the referees. 

 
 
 
 

 
REFERENCES 

 
Duffin RP, Tullis RH (2002). Mathematical model of the complete course 

of HIV infected and AIDS, J. Theor. Med. Pp. 1-7.  
Oluyo TO (2007). A mathematical model of HIV epidemic/verification 

using data obtained under contact tracing of Nigeria, Ph.D Thesis, 
LAUTECH Ogbomoso, Nigeria. 

Oluyo TO, Ayeni RO (2007). A mathematical model of virus neutralizing 
antibody response Res J. Appl. Sci.2: 889 – 891.  

Tullis RH, Scammura D, Ambrus J (2002). Affinity hemodialysis for 
anvirus therapy with specific application to HIV J. Theor Med. 3: 157 
– 166. 

Tullis RH, Duffin RP, Zech M, Ambrus JL (2002). Affinity hemodialysis 
for antiviral Therapy 1. Removal of HIV – 1 from cell culture 
supernatants plasma and blood. Ther. Apher. 6: 213-220. 

Stafford MA, Covey L, Cao Y, Daar ES, Ho DD, Perelson AS (2000).  
Modelling Plasma virus concentration during primary HIV infection, J. 
Theor. Biol. 203: 285 – 301. 

Tullis RH (2004). Mathematical model of the effect of affinity 
hemodialysis on the T-Cell depletion leading to AIDS. Blood 
purification 22: 84 – 91. 

Tullis RH, Duffin RP, Zech M, Ambrus JL (2003). Affinity hemodialysis 
for antiviral therapy II. Removal of HIV – 1 viral proteins from cell 
culture supernatants and whole blood; Blood Purif. 21: 58-63. 

Wang L, Li MY (2006).Mathematical analysis of the global dynamics of 
a model for HIV infection of CD4+T cells, Math Bioscences. 

Hazenberg MD, Hamann D, Schuitemaker H, Miedema FT (2000). Cell 

depletion in HIV – 1 infection. How CD4+T cells go out of stock. Nat. 

Immunol. 1: 285 – 289. 


