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ABSTRACT 

CBP/P300-Interacting Transactivation with Glu/Asp-rich C-terminal domain 2（CITED2), a transcriptional co-

activator, severs critical roles in cell development and metabolism. Currently, CITED2 involves in fundamental cell 

processes via interaction with several transcription factors or cofactors, including Hypoxia-Inducible Factor 1α (HIF-

1α), Transcription Factor AP 2 (TFAP2), Pitx2c, ISL1, WT1, Oct4, Smad 2/3, Peroxisome Proliferator-Activated 

Receptor (PPAR), Ets-1, and E2F. The latest studies have reported that CITED2 appears to have negative regulation of 

angiogenesis, promotive neuronal apoptosis, and inhibiting inflammation. This mini-review aims to summarize the 

molecular mechanisms of CITED2 and how CITED2 plays a role in angiogenesis and neuroprotection after ischemic 

stroke, which may provide innovative therapeutic strategies. 
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INTRODUCTION 
 

 

Ischemic stroke is the result of cerebral artery occlusion 

and causes deficits in brain neural function, accounting for 

80% of strokes and causing a significant economic burden 

to both society and patients [1,2]. Currently, recombinant 

Tissue Plasminogen Activator (rtPA) and endovascular 

intervention are the Food and Drug Administration (FDA)-

approved treatments for ischemic stroke. However, this 

therapeutic application is restricted due to the limited time 

window [3]. Thus, there is an urgent need to search for a 

novel and promising approach. Effective therapies after 

ischemic stroke require protection or recovery of the 

neurovascular unit instead of neurons or vascular 

recanalization. The neurovascular unit is a conceptual 

anatomical framework comprising neurons, glial cells, and 

micro vessels [4]. Improving the neurovascular unit can 

increase the possibility of a good prognosis in ischemic 

stroke. 

          __________________________________________________________________________________________ 
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CITED2, also called MRG1/P35SRJ/MSG1, is a member 

of the CITED family, which also includes CITED1, 

CITED3, and CITED4. [5, 6] CITED2 is a nuclear protein 

widely expressed in mammalian cells and plays a 

significant role in the development and growth of cells [5-

7]. Presently, most of the research has focused on the role 

of CITED2 in tumors, congenital heart disease, 

inflammation, and stem cells. As the role of CITED2 in 

ischemic stroke has not been extensively studied, reviewing 

the function of CITED2 in ischemic stroke may provide 

directions for future studies. In this mini-review, we 

discuss the molecular mechanisms of CITED2 and the role 

of CITED2 in angiogenesis and neuroprotection after 

ischemic stroke. 
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MATERIALS AND METHODS 
 

Molecular mechanisms of CITED2 
CITED2 is a transcriptional co-regulator without a DNA 

binding domain, that can regulate the functions of several 

transcription factors, including TFAP2, PPAR, HIF-1α, 

Smad2/3, and modulates their target gene expression [8-

11]. CITED2 function varies based on the interaction with 

different transcription factors. We briefly summarized the 

molecular mechanisms of CITED2 in this section (Table 1). 

CITED2 was originally found to bind with CBP/P300 

instead of HIF-1α and inhibited the HIF-1α pathway. The 

downstream target of HIF-1α was found to be associated 

with angiogenesis and energy metabolism [12]. CITED2 

activates TFAP2 mediated transcription which is essential 

for normal neural tube and cardiac development [13]. 

During cardiac development, CITED2 regulates the cardiac 

left-right patterning via the left-right patterning Nodal- 

Pitx2c pathway [14]. Through recruited to the ISL1 

promoter, CITED2 enhanced Embryonic Stem Cell (ESC) 

cardiac differentiation [15]. Genetic evidence indicates that 

CITED2 is expressed in the developing adrenal and 

cooperates with WT1 to stimulate the transcription of Sf1, 

which shows that CITED2 participates in sex determination 

and early gonad development [16,17]. Notably, during 

early differentiation of ESC, CITED2 directly is recruited 

to Oct4 to regulate ESC pluripotency and differentiation 

[18]. In TGF β pathway, CITED2 binds with SMAD2/3 

complex to upregulate the target gene expression, including 

Vascular Endothelial Growth Factor (VEGF) and Matrix 

Metalloproteinase 9 (MMP-9) [19]. CITED2 is also 

involved in cell metabolism via PPARα and PPARγ 

transcriptional activation [20,21]. CITED2 is considered to 

play a protective role in cartilage tissue by down-regulation 

of the Ets-1-MMP pathway [22]. A previous study 

demonstrated that CITED2 is involved in the E2F-mediated 

G1/S transition during the cell cycle [22].

Table 1. Transcription factors interacting with CITED2. 

Transcription factor 

(s) 

Period or sites Function (Refs.) 

HIF-1α Hypoxia Binds with CBP/P300 instead of HIF-1α to inhibit 

HIF-1α downstream targets expression 

[10, 12] 

TFAP2 Embryo development Normal neural tube and cardiac development [8, 13] 

Pitx2c Embryo development Regulates the cardiac left-right patterning via 

Nodal- Pitx2c pathway 

[13, 14] 

ISL1 Embryo development Enhances ESC cardiac differentiation [15] 

WT1 Embryo development Regulates sex determination and early gonad   

development 

[16, 17] 

4-Oct Embryo development Regulates ESC pluripotency and differentiation [18] 

Smad 2/3 Tumor growth Regulates the tumor growth by up regulating 

TGF-β downstream targets such as MMP9, VEGF 

[11, 19] 

PPARα, PPARγ cell metabolism Regulates cell metabolism [9, 20, 21] 

Ets-1 cartilage tissue Protects cartilage tissue by down-regulation of the 

Ets-1-MMP pathway 

[22] 

E2F cell cycle Involves in the G1/S transition [23] 

TFAP2: Transcription Factor AP 2; Pitx2c: Paired like Homeodomain 2C; ISL1: ISL LIM Homeobox 1; ESC: 

Embryonic Stem Cell; WT1: Wilms Tumor 1 Transcription Factor; Oct4: Octamer-Binding Transcription Factor 4; 

Smad2/3: Small Mothers Against Decapentaplegic Homolog 2/3; TGF β: Transforming Growth Factor β; MMP9: 

Matrix Metalloproteinase 9; VEGF: Vascular Endothelial Growth Factor; PPARα: Peroxisome Proliferator-Activated 

Receptor α; PPARγ: Peroxisome Proliferator-Activated Receptor γ; Ets-1: Avian Erythroblastosis Virus E26 (V Ets) 

Oncogene Homolog 1; MMP: Matrix Metalloproteinase; E2F: E2 Promoter Binding Factor. 

 
CITED2 and angiogenesis  

 
Angiogenesis is the formation of new blood vessels that 

branch off from pre-existing blood vessels [23-25]. 

Angiogenesis is essential for brain repair after ischemic 

stroke as it can increase blood flow and metabolic nutrients 

in the damaged brain. We speculate that CITED2 may be 

involved in HIF-1α mediated VEGF angiogenesis pathway. 

It is generally believed that HIF-1α mediated VEGF 

angiogenesis pathway is activated in the acute stage after 

ischemic stroke. However, this self-protection pathway 

loses its function in the recovery period after ischemic 

stroke [26,27]. Under hypoxic conditions, the HIF-1α can 

translocate into the nucleus due to the inaction of oxygen-
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dependent HIF Propyl Hydroxylase (PHD). In the nucleus, 

HIF-1α forms a heterodimer complex with HIF-1β and 

binds to CBP/P300, which can induce VEGF gene 

transcription by binding to the Hypoxia Response Element 

(HRE) in the VEGF promoter region [28,29]. Due to 

CITED2 being implicated in the modulating HIF-1α 

activity we speculate CITED2 may compete with HIF-1α 

that has translocate into the nucleus for binding to 

CBP/P300 in ischemic stroke. The CITED2-CBP/P300 

complex inhibits the expression of VEGF gene encoding 

protein that can attenuate angiogenesis (Figure 1). 

Thus, we speculate that CITED2 exhibits a weaker negative 

regulation against angiogenesis in the acute stage after 

ischemic stroke, which is consistent with the angiogenesis 

mechanism in cerebral ischemia. During acute ischemic 

stroke, CITED2 expression may correlate with 

angiogenesis. Moreover, the degree of angiogenesis 

determines the establishment of collateral circulation, 

which means that CITED2 may have an association with 

the establishment of collateral circulation in the brain. 

Collateral circulation can improve perfusion and 

metabolism in the ischemic sites, and is beneficial for the 

recovery of neurological function. CITED2 may be a novel 

biomarker for collateral circulation to predict stroke 

prognosis. However, there is no direct evidence that the 

CITED2 negatively regulates the VEGF angiogenesis 

pathway in the acute stage during ischemic stroke.  This 

mechanism still needs to be further verified. Overall, 

CITED2 may negatively regulate angiogenesis in ischemic 

stroke and may be a novel biomarker for collateral 

circulation, but this mechanism still needs to be verified. 

 

 

Figure 1. Regulation of CITED2 in angiogenesis. HIF-1α is stable in the hypoxia reaction and forms HIF with HIF-1β, which 

enters the nucleus. CITED2 competes with HIF-1α for binding to CBP/P300 to form a transcription complex. The 

transcriptional complexes combine with HRE sequences and regulate angiogenesis by inhibiting VEGF transcription. 

CITED2 and neuroprotection 

 
Ischemic brain damage can occur in a series of pathological 

changes in brain tissues such as excitotoxicity, reactive 

oxygen species, cellular apoptosis, and inflammation, 

which leads to neuroprotection becoming one of the 

therapeutic goals [30,31]. CITED2 plays a role in 

neuroprotection mainly by cellular apoptosis and 

inflammation. 

RESULTS AND DISCUSSION 

It was recently reported that CITED2 is a pro-apoptosis 

signal of stroke-induced cell death via activation of 

cycling-dependent kinase 4 (CDK4) mediated E2F 

transcription factor pathway. First, CDK4 is essential for 

delayed neuronal death and activated in neurons after 

cerebral ischemia. Then, CDK4 mediated the 

phosphorylated retinoblastoma protein (Rb) to activate E2F 

factors transcription. However, the role of each E2F family 

member is not clear. Currently, E2F1 is induced and 

activates CITED2 transcription after ischemia, which 

promotes neuronal death. In contrast, E2F4 is protective 

after cerebral ischemia by inhibiting CITED2 transcription 

[32-34]. 

Besides cellular apoptosis, CITED2 also participates in 

inflammation. Inflammation is initiated by vessel 

occlusion, and pro-inflammatory cytokines are released 

from intravascular leukocytes, ischemic endothelium, and 
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brain parenchyma. The existence of anti-inflammatory 

cytokines restricts pro-inflammatory pathways that prevent 

excessive inflammatory damage [35]. In inflammation, 

CITED2 plays an anti-inflammatory role. Following 

ischemia, microglia, the resident macrophages in the brain, 

and astrocytes are immediately activated. Then activated 

cells secrete cytokines and chemokine’s, which induced the 

migration of intravascular inflammatory cells to ischemic 

brain tissue [36]. CITED2, a negative regulatory factor of 

macrophage pro-inflammatory activation, is mainly 

expressed in macrophages and alleviates inflammatory 

insults. During inflammation, CITED2 cooperates with 

PPARγ to promote anti-inflammatory gene expression. 

Simultaneously, HIF-1α acts as a pro-inflammatory 

cytokine and is inhibited by CITED2 to protect brain tissue 

from further inflammatory insults. However, CITED2 

expression is low, when macrophages are exposed to pro-

inflammatory cytokines, which points to a weak anti-

inflammatory role of CITED2 in the early stages. 

Taken together, this seems to be a contradiction that 

CITED2 is associated with neuronal apoptosis and 

inhibiting inflammation. For this, we hypothesized that: the 

level of CITED2 expression exists in homeostasis in 

neuroprotection (Figure 2). It is generally believed that cell 

death in the penumbra is mainly apoptosis and develops 

within several hours or days. When activated CITED2 is 

abundantly expressed and plays a pro-apoptosis role, and a 

significant number of neurons are induced apoptosis. It is 

well known that brain injury initiates a cascade of 

inflammatory responses to further aggravate ischemic brain 

injury. By this time, abundant CITED2 exhibits anti-

inflammatory effects and restricts inflammation 

aggravation, which plays a neuroprotective role. When the 

brain restores homeostasis, the level of CITED2 expression 

may decrease. Thus, CITED2 may be a pro-apoptosis role 

in the early stage and an anti-inflammatory role during the 

late period. This hypothesis remains to be fully validated.

 

Figure 2. Role of CITED2 in homeostasis. The level of CITED2 expression exists in homeostasis in neuroprotection, 

abrogation of CITED2 homeostasis may lead to neuronal apoptosis or inhibiting inflammation. 

CONCLUSION 

Several published studies have described that CITED2 

plays different roles in ischemic stroke, including negative 

regulation of angiogenesis, promotive neuronal apoptosis, 

and inhibiting inflammation. Among these, promotive 

neuronal apoptosis and inhibiting inflammation seem to be 

a contradiction of CITED2 roles. Based on the CITED2 

mechanism, we hypothesized that CITED2 may be a pro-

apoptosis role in the early stage and an anti-inflammatory 

role during the late period. This hypothesis still needs to be 

verified and may provide a novel direction for the 

treatment, which also is our subject of future study. 

CITED2 may be a novel therapeutic target in promoting 

neurovascular unit by angiogenesis and neuroprotection. 

Thus, intervening CITED2 expression may be more 

beneficial for functional recovery of ischemic stroke. 

Moreover, CITED2 may be a novel biomarker to predict 

stroke prognosis. A better understanding of CITED2 

mechanisms can guide the development of innovative 

treatment. 
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