

International Journal of Agroforestry and Silviculture ISSN 2375-1096 Vol. 4 (3), pp. 278-284, March, 2017. Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

Traditional agroforestry practices and woody species conservation in the derived savanna ecosystem of Adamawa state, Nigeria

¹Oke DO and ²Jamala GY

¹Department of Forestry and Wood Technology, Federal University of Technology, Akure, Ondo State, Nigeria. ²Adamawa State College of Agriculture, Ganye, Adamawa State, Nigeria.

Accepted 02 September, 2013

Agroforestry practices are known to contribute to food security, environmental protection and biodiversity conservation. To determine the extent of contribution of some traditional agroforestry practices to woody species conservation, data were collected from the natural fallow land, grazing land and natural forest in, and around the Gumti sector of Gashaka-Gumti National Park, covering Toungo and Jada local government areas of Adamawa State, Nigeria. The area was sampled in a group of twelve 0.04 ha (20 m × 20 m) plots per land use type. All woody plants with diameter at breast height greater than or equal to 5 cm were identified. A total of 0.48 ha of natural fallow, grazing land and natural forest were surveyed. A total of 361 individuals belonging to 28 species and 18 families were identified in the 0.48 ha of natural forest surveyed. In the natural fallow, 314 individuals belonging to 32 species in 17 families were encountered while the grazing land had 211 individuals belonging to 24 species in 15 families. The natural forest had the highest density of woody species (752.08 plants/Ha) while the lowest (439.58 plants/Ha) was observed on the grazing land. The values Shannons diversity index differ significantly among the land use types with the natural forest having the highest (0.85), while the grazing land had the least (0.56). The rare faction curves, however indicated that the grazing land had the highest species richness relative to the total number of individuals encountered.

Keywords: Agroforestry, natural fallow, forest, grazing land, woody species conservation.

INTRODUCTION

Among the major challenges facing the world today are deforestation, land degradation, unsustainable farming practices, loss of biodiversity, increased risks of climate change and rising hunger, poverty and malnutrition. Agroforestry has been identified as a land-use option that can address many of these global challenges. Deliberate inclusion of trees in agricultural landscapes has been a common practice among farmers for a very long time and the farming communities have played important roles in conserving crop and tree diversity.

Although the traditional agroforestry practices have contributed immensely to food security and environmental protection, the need to meet the increasing needs of the burgeoning population has led to the development of modern agroforestry practices with ecosystem and simplified structure consequent destruction of biological diversity. In recent times, scientists have become interested in the environmental services that agroforestry practices may provide to local and even global society by maintaining watershed functions, retaining carbon in the plant-soil system, and by supporting the conservation of biological diversity

^{*}Corresponding author E-mail: davoke2003@yahoo.com

(McNeely and Scherr 2003; Schroth et al. 2004).Greater attention is now being paid to those complex tree-based traditional practices that are so wide-spread in traditional tropical land use.

The natural environment in the savanna ecosystem is characterized by a combination of trees and grasses in different proportions. Farmers in the West African savannas maintain valuable trees, which also resist periodical fires in and around their fields giving rise to distinct park like landscape (Boffa, 1999). Scattered trees on farmland/pasture and bush fallowing are the common traditional agroforestry practices in the savanna ecosystem of Nigeria (Oboho 1992; Chup 2004). Traditionally farmers grow crops under scattered trees of different species and they sometimes incorporate animal production with no special technique, species type or density per unit area. The trees are allowed to grow and they appear scattered over the farm. Many farmers in these areas also practice shifting cultivation which is the alternation of cropping periods with those of fallow.

Agroforestry systems in areas surrounding protected areas can reduce biodiversity loss, restore degraded areas, and integrate local cultural practices and economic needs into biodiversity conservation (Ashley et al 2006; Bhagwat et al., 2008; Mcneely and Schroth 2006; Nair et al 2005). Many agroforestry systems have been studied for their roles in biodiversity conservation. There have been reports on biodiversity conservation in shade coffee agroforestry system (Perfecto et al, 1996; Morguet and Toledo, 1999), multistrata cocoa agroforestry (Oke and Odebiyi, 2007; Harvey and Gonzalez Villalobos, 2007) and homegarden agroforests (Ewel, 1999). In a survey of flouristic diversity of 402 homegardens from six regions across southwestern Bangladesh, Kabir and Webb (2009) reported 419 species including six species of conservation concern.

A study conducted by Backes (2001) on the contribution of agroforestry land use to the *in-situ* conservation of indigenous trees within a typical East African smallholder farming system in western Kenya shows how species diversity is ultimately linked to the loss of habitat diversity and landscape diversity. Fifanou et al (2011) recorded twenty-one tree species belonging to 14 botanical families during the survey of traditional agroforestry parkland systems around the Pendjari Biosphere Reserve in Benin.The present study seeks to evaluate the conservation values of the major traditional agroforestry practices in a derived savanna ecosystem of Nigeria

METHODOLOGY

Study site

The study was carried out in and around Gumti sector, in the northern half of Gashaka-Gumti National Park,

covering Toungo and Jada local government areas of Adamawa State. Gashaka-Gumti National Parks (GGNP) is located on latitude 6°55′– 8°13′Nand longitude 11°13′-12°25′E. The Park is made up of the Gashaka sector in the southern half of the park, and Gumti sector to the Northern half. The Northern, Gumti sector of the Gashaka-Gumti National Park consists of derived Savannah with forest fringing along streams, steep valleys and on montane line. The rugged terrain is characterized by steep, thickly forested slopes, deep plunging valleys, precipitous escarpments and swiftly flowing rivers. Altitude is about 450 meters above sea level.

The area received an annual rainfall of 1000–1200 mm. Rainfall distribution is unimodal, with much of the rain falling between April and November. Day time temperatures may drop below 18°C at higher altitudes and gradually rise to 40°C. The rainy season is followed by a dry season. During this period, the area comes under the strong influence of the harmattan (November and March) a dry dusty wind blows from Sahara Desert and temperatures may be significantly cooler (GGNP, 2010)

Experimental Design

Three land use types - undisturbed natural forest, grazing land, and abandoned natural fallow - were identified around the Gumti side of the park. Three transect lines were cut through the natural forest and grazing land at a minimum distance of 100 m apart. Four sampling plots of $20m \times 20m$ in size were laid in alternate pattern along each transect at 50m intervals.Four abandoned fallow (8 – 10 years of natural fallow) were selected from the encroached area very close to the Forest Reserve. Three 20 m x 20 m plot was demarcated within the centre of each fallow land and data were collected from each plot. Assessment of tree diversity was done in sample plots demarcated within four natural fallow lands in the fringe settlements

With the assistance of an experienced taxonomist, all woody species (dbh> 5cm) encountered in each of the demarcated sample plots were identified and their frequency of occurrence recorded. For unknown tree species, leaves, slash and bark of such tree were collected and taken to the herbarium for identification. The total number of each tree species encountered in the twelve sample plots (0.48 ha) for each ecosystem was calculated (frequency) and the figure was used in estimating number of trees per hectare (tree density).Species diversity was calculated as H' = $-\sum{(n_i/N)\log_e(n_i/N)}$, where H' = Shannon index of general diversity, ni = number of individuals of a species, N = total number of individuals in the community.

Data Analysis

Values of Shannon diversity indices and tree density of the three types of plant communities were compared Table 1. Diversity of tree/shrub species in the 0.48 ha of natural fallow in the derived savanna ecosystem of Adamawa State.

Species	Family	Frequency	Density
			(trees/ha)
Philiostigmathonningii(Schum.) Milne-Redh.F	Fabaceae	81	168.75
Anogeissousleiocarpus (DC.) Guill. &Perr.	Combretaceae	57	118.75
Acacia gourmaesis A. Chev.	Leguminoseae	27	56.25
PteleopsishabeensisAubrév. ex Keay	Combretaceae	19	39.58
StrychnosinnocuaDelile	Loganiaceae	17	35.42
Combretummolle R.Br. ex G.Don	Combretaceae	15	31.25
BoswelladalzieliiHutch	Buseraceae	12	25.00
Dichrostachyscinerea (L.) Wight et Arn.	Mimosaceae	12	25.00
AnnonasenegalensisPers	Annonaceae	7	14.58
Acacia niloticaBenth	Leguminoseae	6	12.50
CombretumglutinosumPerr. ex DC.	Combretaceae	6	12.50
Ziziphusmauritiana Mill	Rhamnaceae	6	12.50
Acacia spp	Leguminoseae	5	10.42
Daniellaoliveri(Rolfe) Hutch	Leguminoseae	5	10.42
Diospyrousspp	Ebenaceae	5	10.42
EntandaafricanaGuill&Perr	Legumonoseae	5	10.42
Acacia ataxacantha DC	Leguminoseae	4	8.33
CombretumgabonenceExell	Combretaceae	4	8.33
Combretumspp	Combretaceae	3	6.25
<i>Gmelinaarborea</i> Roxb	Verbenaceae	3	6.25
Viteleriaparadoxum G. Don	Sapotaceae	3	6.25
IsoberlinadokaCraib&Stapf.	Fabaceae	2	4.17
Acacia polyacanthaWilld	Fabaceae	1	2.08
BombaxcostatumPellegr&Vuillet	Bombacaceae	1	2.08
CrossopteryxfebrifugaAfzel. Ex G. Don	Rubiaceae	1	2.08
DetariummacrocarpumGuill&Sperr	Caeselpiniaceae	1	2.08
HymenocardiaacidaTul.	Hymenocardiaceae	1	2.08
Lanneaschimperi (Hochst.) Engl	Anacardiaceae	1	2.08
Parkiabiglobosa (Jacq.) R.Br. ex G. Don	Fabaceae	1	2.08
Psedocedriakoschyle		1	2.08
Sterculiasetigera Del	Sterculiaceae	1	2.08
ZiziphusabyssinicaHochst. ex A. Rich	Rhamnaceae	1	2.08
		314	

usingANOVA.The rarefaction method (Gotelli and Colwell, 2001) was used to generate the expected number of species in natural fallow, grazing land and in natural forest. The free software EstimateS 8.0 (Gotelli, 2006) was used to generate data for the construction of sample-based rarefaction curves and confidence intervals for species richness after re-scaling the x-axis to individuals.

RESULTS

Three hundred and sixty one individuals belonging to 27 species and 18 families were identified in the 0.48 ha of natural forest surveyed (Table 1). The richest family was combretaceae which had four species. Family leguminoseae and Rubiaceae had three species each while caeselpiniaceae had two.The predominant 10 woody species present in the natural forest accounted for 85% of their total population. They included *Detariumm acrocarpum*, *Lophira lanceolata*, *Hymenocardia acida*,

In the 0.48 ha of the natural fallow surveyed, 314 individuals belonging to 29 species in 17 families were encountered (Table 2). The richest families were

Burkea

africana,

Prosopis

Crossopteryx febrifuga,

ferruginea, Terminalia glucoses,

Annona senegalensi sand Daniellaoliveri.

Bridelia

africana,

Combretaceae (six species), Fabaceae (four species) and Leguminoseae (three species). The dominant woody species were *Philiostigma thonningii, Anogeissous leiocarpus, Pteleopsis habeensis, Strychnos innocua, Combretum molle, Boswella dalzielii* and *Dichrostachys cinerea.* In the 0.48 ha of the grazing land surveyed, 211 individuals belonging to 24 species in 15 families were encountered (Table 3). The richest family was Combretaceae which had six species. Family fabaceae, meliaceae and rubiaceae had two species each. The dominant woody species were *Anogeissous leiocarpus, Philiostigma thonningii, Combretummolle, and Vitelaria paradoxum.*

The natural forest had the highest density of woody species (752.08 plants/Ha) while the lowest (439.58

Species	Family	Frequency	Density (trees/ha)
Anogeissousleiocarpus (DC.) Guill. &Perr.	Combretaceae	120	250.00
Philiostigmathonningii (Schum.) Milne-Redh.F	Fabaceae	18	37.50
Combretummolle R. Br. ex G. Don	Combretaceae	11	22.92
<i>Viteleriaparadoxum</i> G. Don	Sapotaceae	10	20.83
Detariummacrocarpum Guill&Sperr	Caeselpiniaceae	9	18.75
Combretumspp	Combretaceae	6	12.50
Azadirachtaindica A. Juss.	Meliaceae	4	8.33
Combretumglutinosum Perr. ex DC.	Combretaceae	4	8.33
Lanneaschimperi (Hochst.) Engl	Anacardiaceae	4	8.33
Pseudocedrelakotschyi Harms	Meliaceae	4	8.33
Bombaxcostatum Pellegr&Vuillet	Bombacaceae	3	6.25
Acacia polyacantha Willd	Fabaceae	2	4.17
Combretumgabonence Exell	Combretaceae	2	4.17
Viteleriaparadoxum G. Don	Sapotaceae	2	4.17
<i>Dalbergiasisoo</i> Roxb. ex DC.	Papilionaceae	1	2.08
Brideliaferruginea Benth	Euphorbiaceae	1	2.08
Crossopteryxfebrifuga Afzel. Ex G. Don	Rubiaceae	1	2.08
Ficusspp	Moraceae	1	2.08
Khayasenegalensis Desr (A.Juss).	Meliaceae	1	2.08
Maytenussenegalensis (Lam.) Exell	Celastraceae	1	2.08
Parinariexcelsa Sab.	Chrysobalanaceae	1	2.08
Prosopisafricana Guill.	Mimosaceae	1	2.08
Strychnosinnocua Delile	Loganiaceae	1	2.08
Xemeniaafricana	Oleaceae	1	2.08
		211	

Table 2.Diversity of tree/shrub species in the 0.48 ha of grazing land in the derived savanna ecosystem of Adamawa State.

plants/Ha) was observed on the grazing land. Woody species diversity was also significantly higher in the natural forest indicating a greater variety of species (Table 4). The rarefaction curves (Fig 1) also indicate that the natural forest supports relatively higher species richness that a floristically and climatically similar sites of grazing land and natural fallow

DISCUSSION

This study reveals that a large number of woody species occur in the traditional bush fallow system and scattered trees on grazing land systems of the derived guinea savanna ecosystem of Adamawa State, Nigeria. However a modification of the species composition was observed in both the grazing land and natural fallow with more pioneer species and different dominant species compared with the natural forest. *Anogeissous leiocarpus* and *Philiostigma thonningii*were the dominant woody species in both the natural fallow and the grazing land systems as opposed to *Detarium macrocarpum* which

dominated the natural forest. The dominance of Anogeissous leiocarpus in the natural fallow and the grazing land systems may not be unconnected with its attribute as a pioneer species which grows well in open forest clearings. Moreover, farmers might have deliberately retained the species because of its usefulness as a fodder species. The species has also been found very useful for various other purposes such as carving and firewood production, provision tanning and medicinal application and dveing materials (Sacande and Sanago, 2007). Philiostigma thonningii is also a very useful fodder species which produces edible leaves fruits and seeds. Its versatility as soil improver and provider of shade and many useful products might have accounted for its deliberate retention on the fields by farmers.

Another woody species that was common to the natural fallow and grazing land of the study area is *Combretum molle*. It is an important fodder species whose leaves are browsed by cattle. Its wood is very good for firewood, it produces good quality charcoal and various parts of the plant have been found to be of important medicinal value.

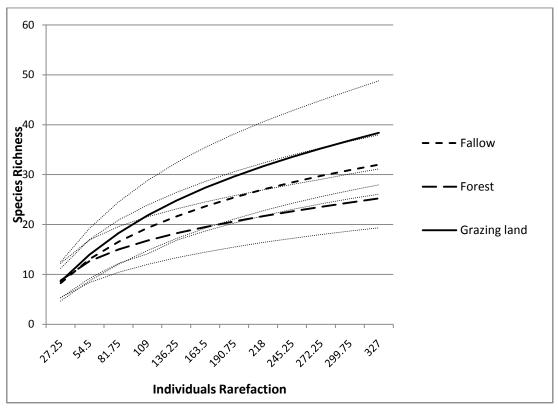
Species	Family	Frequency	Density (trees/ha)
Detariummacrocarpum Guill&Sperr	Caeselpiniaceae	87	181.25
LophiralanceolataTiegh ex Keay	Ochnaceae	43	89.58
HymenocardiaacidaTul.	Hymenocardiaceae	37	77.08
Crossopteryxfebrifuga Afzel. Ex G. Don	Rubiaceae	34	70.83
Burkeaafricana Hook. f. Home	Caeselpiniaceae	29	60.42
Brideliaferruginea Benth	Euphorbiaceae	23	47.92
TerminaliaglaucescensPlanch ex Benth	Combretaceae	20	41.67
Prosopisafricana Guill.	Mimosaceae	15	31.25
Annonasenegalensis Pers	Annonaceae	10	20.83
Daniellaoliveri(Rolfe) Hutch	Leguminoseae	9	18.75
Parinariexcelsa Sab.	Chrysobalanaceae	7	14.58
Philiostigmathonningii (Schum.) Milne-Redh.F	Fabaceae	7	14.58
Maytenussenegalensis (Lam.) Exell	Celastraceae	6	12.50
Lanneaacida A. Rich	Anacardiaceae	5	10.42
Anogeissousleiocarpus (DC.) Guill. &Perr.	Combretaceae	4	8.33
Ficusspp	Moraceae	4	8.33
Entandaafricana Guill&Perr	Legumonoseae	3	6.25
Pericopsislaxiflora (Benth) Harms.	Papilionaceae	2	4.17
Securidacalongipedunculata	Polygalaceae	2	4.17
Bombaxcostatum Pellegr&Vuillet	Bombacaceae	1	2.08
Boswelladalzielii Hutch	Buseraceae	1	2.08
Combretumgabonence Exell	Combretaceae	1	2.08
Combretumglutinosum Perr. ex DC.	Combretaceae	1	2.08
Combretumspp	Combretaceae	1	2.08
Nauclealatifolia	Rubiaceae	1	2.08
Pterocarpus erinaceous Poir	Leguminoseae	1	2.08
Vitexsimplicifolia Oliv.	Verbanaceae	1	2.08
-		361	

Table 3. Diversity of tree/shrub species in the 0.48 ha of Natural forest in the derived savanna ecosystem of Adamawa State.

Table 4.Density and diversity indices of trees/shrubs natural forest, grazing land and natural fallow ecosystems in the derived savanna ecosystem of Adamawa State.

	Total no of trees/shrubs	Tree/shrub density (n/Ha)	Diversity index
Forest	361	752.08	0.85a
Grazing	211	439.58	0.56c
Fallow	314	654.17	0.76b

Means on the same column followed by same letters are not significantly different (P < 0.05).


The high density of woody species recorded in all sites in this study may be attributed to the use of 5 cm minimum diameter at breast height (DBH) and the inclusion of shrub species in the enumeration. Expectedly, tree/shrub density was highest in the natural forest while the grazing land had the least value. Although the agroforestry plots contained a large variety woody species, Shannons index indicated that they had have lower species diversity than the natural forest.

The rarefaction curves in this study indicated that the grazing land had the highest species richness followed by the natural fallow while the least was in the natural forest. This is appears to negate the results of shannon's indices. This may not be unconnected with the fact that

there were more individuals in the natural forest relative to the number of different species. Gotelli and Colwell (2001) emphasized the importance of using taxon sampling curves (both individual- and sample-based) to standardize datasets to a common number of individuals for the purpose of comparing species richness.

ACKNOWLEDGEMENTS

The assistance of Messrs Yohana Kwache and Salihu Batango during data collection is acknowledged. The authors are also grateful to the authority of Gashaka Gumti National Park, Teungo Station, Adamawa State, Nigeria.

Fig 1.Woody species richness in natural forest, natural fallow and grazing land ecosystems in Gumti area, Nigeria. Individual rarefaction curves and confidence intervals.

REFERENCES

- Ashley, R., Russel, D., Swallow, B., 2006. The policy terrain in protected area landscapes: challenges for agroforestry in integrated landscape conservation. Biodiversity and Conservation 15, 663-689.
- Backes M.M. 2001. The role of indigenous trees for the conservation of biocultural diversity in traditional agroforestry land use systems: the Bungoma case study. Agroforestry Systems, 52: 119–132.
- Bhagwat S.A., Willis K.J., Birks H.J.B., Whittaker R.J. 2008. Agroforestry: a refuge for tropical biodiversity? Trends in Ecology and Evolution, 23:261-267.
- Boffa J.M. 1999 Agroforestry parklands in Sub-saharan Africa.FAO Conservation Guide 34.Food and Agricultural Organization of the United Nations, Rome. 230pp.
- Ewel (1999) Natural systems as models for the design of suitable systems of land use. Agroforestry Systems 45:1-21.
- Fifanou, V. G.; Ousmane, C.; Gauthier, B.; Brice, S. 2011. Traditional agroforestry systems and biodiversity conservation in Benin (West Africa)Agroforestry Systems 82 (1): 1-13
- GGNP, (2010). A Wild World of Wonders! Taraba State, Nigeria. 50 Pp.

- Gotelli N.J and R.J. Colwell (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4:379-391.
- Gotelli, N.J., 2006. EstimateS statistical estimation of species richness and shared species from samples. http://viceroy.eeb.uconn.edu/EstimateS pages/EstimateS.flx.
- Harvey C.A. and Gonzalez Villalobos J.A. (2007) Agroforestry systems conserve species rich but midified assemblages of tropical birds and bats. Biodiversity Conservation 15:555-585.
- McNeely J.A. and Scherr S.J. 2003.Ecoagriculture: Strategies to Feed the World and Save Wild Biodiversity. Island Press, Washington D.C., 323 pp.
- McNeely J.A. and Scroth G. 2006.Agroforestry and biodiversity conservation traditional practices, present dynamics and lessons for the future. Biodiversity Conservation, 15:549-554.
- Morquel P. and Toledo V.M. (1999).Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13:11-21.
- Nair P.K.R., Allen S.C. and Bannister M.E. 2005. Agroforestry today: an analysis of the 750 presentations to the 1st World Congress of Agroforestry, 2004. J. Forest 103:417-421.

- Oboho, E.G. and Anyia, O.O. (1992), Agroforestry Practices in Semi-Arid Zone of Nigeria, In: Akinsanmi F.A. (ed) Proceedings of the 22nd Annual Conference of the Forestry Association of Nigeria, Held in Kano, Kano State, Nigeria, 2nd-7th Nov., 1992. Pp78.-85 Oke D.O. and Odebiyi K.A. (2007).Traditional cocoa-
- Oke D.O. and Odebiyi K.A. (2007).Traditional cocoabased agroforestry and forest species conservation in Ondo state, Nigeria. Agriculture Ecosystems and Environment.122(3):305-311.
- Perfecto I., Rice R., Greenberg R., van der Voorst M.E. (1996). Shade coffee: a disappearing refuge for biodiversity. BioScience 46:598-608.
- Sacande M. and Sanago S. 2007. *Anogeissousleiocarpus* (DC.)Guill. & Perr.Seed Leaflet No. 119, Forest & Landscape Denmark. 2pp.
- Schroth G., Fonseca G.A.B., Harvey C.A., Gascon C., Vasconcelos H.L. and Izac A.-M.N. 2004.Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press, Washington. 523pp.