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The aim of this paper is to extend the truncated and endogenously stratified Poisson and negative 
binomial models to three alternative discrete distributions, namely the generalized Poisson, geometric 
and Borel distributions. Our primary intention here is to demonstrate how the improper treatments of 
the data generate divergent outcomes by applying those results to the recreation trip data surveyed 
from the visitors to an indigenous horse park in Japan. Our empirical application shows that failure to 
account for overdispersion, truncation and endogenous stratification leads to substantial changes in 
parameter estimates and their standard errors. The parameter on the travel cost tends to be 
underestimated in absolute value in the standard setups. This induces serious overestimation of the 
economic benefit that the recreation site offers to the society. Even when the endogenous stratification 
is incorporated, ignoring the overdispersion estimates the per capita per trip consumer surplus over 7 
times larger than the one obtained under the endogenous stratification and overdispersion. 

 
Key words: Count data models, endogenous stratification, overdispersion, recreation demand analysis, 

consumer surplus. 
 
 
INTRODUCTION 
 
The aim of this paper is to extend the truncated and 
endogenously stratified Poisson and negative binomial 
regression models to various alternative count data 
models. Truncated count data models have long been 
applied in many research fields.  

In agricultural economics, the recreation demand 
analysis, or the travel cost method (TCM) is a major area 
of applications where the number of trips of individuals or 
households to a particular site, which usually takes non-
negative integers, is described in count data models. The 
data sets for recreation demand analyses are usually built 
up through survey sampling since there rarely exist 
ready-made statistics that represent consumers' behavior 
towards recreation sites as well as their socio-economic 
variables. It is often the case that a recreation demand 
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analysis is aimed at evaluating in monetary term the 
social value that the focused recreation site implicitly 
offers to the public, so that samples are supposed to be 
collected over a reasonably wide range of population.  

Due to the difficulty in implementing such a large scale 
survey, an on-site sampling is preferred in many empirical 
studies. An on-site survey, however, involves two 
possibly serious disadvantages unless correctly treated. 

One is that the observed counts are truncated at zero
1
. 

This occurs because the survey obviously excludes the 
possibility for researchers to gather information from non-
visitors.  

As a result, researchers do not take a sample from the 

population but from a subset of the population. In this 

situation, the statistical inference has to be carried out 
 
 
1
 Although there are many forms of truncation, the discussions in this paper 

are limited to the truncation at zero, or simply referred to as “truncation” 
hereafter. General treatments for the various forms of truncation can be found, 
for instance, in Johnson et al. (1992). 



 
 
 
 
based on a truncated distribution. The other is a problem 
of an endogenously stratified sampling. An on-site survey 
is likely to contain individuals who come to the site more 
frequently than those who come less. Shaw (1988) first 
pointed out this circumstance in the context of recreation 
demand analysis and called it “endogenous stratification” 
(or endogenous sampling). Endogenous stratification 
“may cause the sample probability of observations to 
differ from the corresponding population probabilities” 
(Cameron and Trivedi, 1998: 326). Therefore, in addition 
to truncation, endogenous stratification should also be 
taken into account in making an inference on the 
population demand function if on-site surveyed data are 

used
2
.  

Since the economic theory does not suggest a parti-

cular distribution
3
 for recreation trips, it is an empirical 

question which distribution to be chosen from candidate 
distributions. There exists another motivation for 
considering alternative distributions in that the 
equidispersion, that is, the mean-variance equality in the 
Poisson distribution, is often turned out to be unrealistic. 
Although, there are many discrete distributions that may 
be applicable to recreation trip data, the Poisson and 
negative binomial distributions have been the common 
choices in the past literature when truncation is 
considered (Creel and Loomis, 1990; Gurmu, 1991; 
Grogger and Carson, 1991). For further references, see 
Cameron and Trivedi (1998) and Winkelmann (2003) for 
count data models in general. 

An exception is Santos (1997a) who employs the 
generalized Poisson distribution of Consul and Jain 
(1973) and Consul (1989) to the truncated fishing trip 
data in Alaska. Another example is Sarker and Surry 
(2004) who propose six alternative truncated count data 
models, namely, the geometric, logarithmic, Borel, Yule, 
generalized negative binomial, and generalized Poisson 
distributions to estimate the demand for moose hunting in 
Ontario.  

In the endogenously stratified setting, Shaw (1988) 
develops the theoretical motivations and applies them to 
the Poisson distribution. Santos (1997b) argues from a 
different perspective the same idea as Shaw (1988) in 
relation to unobserved heterogeneity. Englin and 
Shonkwiler (1995) later extend the results of Shaw (1988) 
to the negative binomial distribution for describing the 
hiking behavior in Washington. However, empirical appli-
cations are quite limited. To the best of our knowledge, 
no author seems to have attempted to extend it from the 
negative binomial to alternative distributions.  

In what follows, the next section outlines the theoretical 

backgrounds for the truncation and endogenous 

stratification in a count data distribution, and applies them 
 
 
2 For simplicity, we refer to the truncation and endogenous stratification as 
the “endogenous stratification” hereafter. Note that when we mention “the 
truncation and endogenous stratification”, it means, to be precise, that “the 
truncation” and “the truncation and endogenous stratification”. 

  

3 In this paper, we use the terms “distribution” and “model” interchangeably. 
 

 
 
 

 
to miscellaneous distributions. Then the empirical 

application is carried out and the outcomes of ignoring 
truncation and/or endogenous stratification are dis-

cussed. Finally some concluding remarks and directions 
for future research are stated. 
 
 
TRUNCATION AND ENDOGENOUS STRATIFICATION 
 
Baseline distribution 
 
Basic assumptions for the population distribution we assume 

are that the number of trips ( ) taken by person , in 

a society (or in the population in the statistical sense) follows 

a certain probability distribution defined on non-negative 

integers . Also assumed are the independence and 

identical distribution over the population. Let  denote the 

person 's realization of . The socio-economic attributes of 

the person  are represented as a  vector  that may 

include a constant and the site-specific characteristics. The 

travel cost to the site is incorporated in . As usual, the 

conditional mean  is defined as a nonlinear function 

of  and  where  is a  vector of 

parameters to be estimated. Let   
and , denote the probability density 
function (pdf) and the cumulative distribution function 
(cdf) conditional on  and  of the underlying population 
distribution, respectively. In what follows, we  
suppress  the  condionality  on or and unless 
otherwise required.    

Suppose that we have a sample of size collected 
from the population. Then we do not need to adjust the 

distribution. The log-likelihood function in this case is 

constructed such that: 
 

 
(1) 

 

Where  is an  vector of observed number of trips. 
Assuming that the regularity conditions (Cameron and 
Trivedi, 1998, pp. 23-24, for example) are satisfied and 
that the conditional mean  is correctly specified, the 
maximum likelihood estimator of  is efficient, consistent 
and asymptotically normal. An on-site sampling, however, 
is not a sampling from the population. As we will see 
later, the conditional mean is no longer  
given by . Therefore, the inference based on (1) in 
general does not produce consistent  results. 
 
 
Truncated distribution 
 
If the survey was conducted on the site, we were not able 

to have an observation with zero visit. This means that 

we do not sample from the population but from a subset 
of the population. In this environment, the conditional 



 
 
 

 

mean is no longer , so that the estimator based 

on (1) are not consistent. Given that the sampling is random, 

an appropriate procedure has to be established on the 

truncated distribution. When an underlying distribution is 

truncated, the resulting pdf is obtained by: 
 

 
(2) 

 
It follows from the basic probability theory that the mean 
and variance of the truncated distribution are linked to 
those of the underlying distribution in the following 
manner. By definition of the expectation of a random 
variable, the mean of the truncated distribution is derived 

as: 
 
 
 

 . (3) 

 
Obviously (3) differs from . By the similar 

manipulation, we have 
 

 
 . (4) 

 
Hence the variance of the truncated distribution is 

connected to the first and second moments of the original 

distribution in such a way that 

 

 
 
 
 
 
observations differ from the corresponding population 
probabilities. As was first pointed out by Shaw (1988), an 
on-site survey tends to have, in addition to the truncation, 
a stratified sampling scheme because the frequent 
visitors are more likely to be included in the sample. 
Here, we only reproduce the results shown by Shaw 
(1988) and Santos (1997b). Shaw (1988) shows that the 
density function for the endogenously stratified sample is 
given by 
 
 

(7) 
 
Where  denotes the sample density function. It is 

straightforward to obtain the mean and variance of  
in terms of the lower moments of the population 

distribution. For the mean, 
 
 
 
 
 
 
 
 
 

(8) 
 
that is shown by Santos (1997b), while for the variance 

we find that 

 
 

 
(5) 

 
Now the log likelihood function for the truncated sample is 

equal to 
 
 

 
(6) 

 
Given that the regularity conditions hold and the 
conditional mean is correctly specified, the estimator 
based on (6) are efficient, consistent and asymptotically 
normal. Nevertheless, an on-site sampling invokes yet 
another point of interest, that is, an endogenously 
stratified sampling that is explained in the following 
subsection. 
 
 
Endogenously stratified distribution 
 
Although, the sample is selected randomly within same 

strata, the fact that the selection of strata is dependent on 

the number of trips makes the sample probability of 

 
 
 
 

 
(9) 

 
The log-likelihood function for the endogenously stratified 

sample is thus given by 
 

 
(10) 

 
Again, given that the regularity conditions are fulfilled and 

the model is correctly specified, the estimator based on 

(10) is efficient, consistent and asymptotically normal. 
 
 
Application to various models 
 
In the previous two subsections, we have derived from 
the population distribution the general expressions of the 
pdfs, means, variances and log likelihood functions for 
the truncated or endogenously stratified distributions. We 
now apply these general expressions to particular 
distributions. Besides the conventional distributions 



 
 
 
 
Table 1. Pdfs of standard, truncated and endogenously stratified distributions and their parameterizations. 
 
Distribution Parameterization Remark  

 

Poisson    
 

NegBin II  Poisson when  
 

  Geometric when  
 

Generalized  
Poisson when 

 
 

Poisson   
 

 

Borel when and 
 

  
  

Geometric 
 
Borel 

 
 
 
(Poisson and negative binomial), the ones con-
sidered in this paper are the generalized Poisson, 

geometric and Borel distributions
4
. The analytical 

expressions of the pdfs, means and variances for 
the candidate distributions in the standard (Std), 
truncated (Tr) and endogenously stratified (ES) 
cases are derived and summarized in Tables 1 - 
3, respectively. Table 1 also contains para-
meterizations, due to Sarker and Surry (2004), 
that bring , and remarks that 
explain parameter restrictions and the relationship 
among distributions.  

The assumption of the equidispersion, that is 
the mean is equal to the variance, is common 
criticism for the standard Poisson distribution. 
Indeed, many previous applications find the 
overdispersion, that is, the variance being greater 
than the mean, in real data and conclude that the 

 
4
 Sarker and Surry (2004) also investigated the Logarithmic and Yule 

distributions. Nonetheless, we exclude these distributions because the 
consumers’ surplus is not easily evaluated in the Logarithmic 
distribution, and because  is necessary in the Yule 

distribution for the existence of the mean. The former may be an 

obstacle to a practical application, while the latter is violated in our 

data set.  

 
 
 
equidispersion is an unrealistic assumption. Inte-

grating the overdispersion into a model constitutes a 

main motivation for the use of alternative count data 

models. For this purpose, Cameron and Trivedi 

(1986) propose a version of the negative binomial 

distribution with an additional parameter  to control 

the degree of the overdispersion in the population, 

and name it the negative binomial II or NegBin II. 

The geometric distribution is nested in the NegBin II 

with the restriction of . The positive  indicates 

the overdispersion while the Poisson distribution 

results as a limit when .  
Consul and Jain (1973) generalize the Poisson 

distribution to incorporate the overdispersion in a 
different manner. The generalized Poisson distri-
bution is attractive because it includes both the 
Poisson and Borel distributions as special cases 
with explicit parameter constraints. It is reduced to 
the Poisson distribution with  and to the  
Borel distribution with  and , 

respectively. The degree of the overdispersion in 
the population is controlled by  in our 

notation found in Table 1. The monograph by 

Consul (1989) provides the intensive summary of 

the properties of the generalized Poisson 

 
 
 
distribution. The log-likelihood functions (1), (6) 
and (10) are formulated according to the pdfs 
appeared in table 1. As mentioned earlier, if the 
regularity conditions are satisfied and if the 
moments of distributions are correctly specified, 
the ML estimation attains consistency, efficiency 
and asymptotic normality of the estimators. While  

 and  in Table 1 are confirmed to 
satisfy the regularity conditions see (Cameron and 
Trivedi, 1998, for the Poisson and negative 
binomial, Santos Silva, 1997a, for the generalized 
Poisson, and Sarker and Surry, 2004, for the 
geometric and Borel distributions, respectively), it 

is yet to be proved whether  also satisfies 
them. For the current application, we assume that 
the regularity conditions hold in  appeared in, 
Table 1 and that the conditional means are 
correctly specified. 

 
Empirical illustration 
 
Data 
 
The data set was collected by on-site interview in 

November 2003 for the visitors to the Noma highland 

indigenous horse park in Ehime prefecture, Japan. The 



 
 
 
 

Table 2. Means of standard, truncated and endogenously stratified distributions. 
 

Distribution  
Poisson 

 
NegBin II 

 
Generalized Poisson 

 
Geometric 

 
Borel 

 
 

Table 3. Variances of standard truncated and endogenously stratified distributions. 
 

Distribution  
Poisson 

 
NegBin II 

 
 

Generalized Poisson 
 

Geometric 
 

Borel 
 

 
Table 4. Description of variables. 
 
 Name Description Mean S.E. 

 

 
Trips The number of trips to the site for the past three year period 9.065 11.215 

 

    
 

  The travel cost to the site in 10
3
 JPY. Constructed by monetary expenses 

0.913 1.430  

 
TC plus 1/3 of the minimum wage rate.  

   
 

 
Kids A binary dummy equal to 1 if accompanying a child/children 0.801 0.400 

 

    
 

 
Male A binary dummy equal to 1 if a respondent is male 0.392 0.490 

 

    
 

 
Age The natural logarithm of the age divided by 10 of a respondent 1.148 0.301 

 

    
 

 
Horse 

A binary dummy equal to 1 if a respondent is in favor having contact with 
0.720 0.450  

 horses on the site  

    
 

 
 
 
questionnaire includes the travel cost and time, the frequency of 
visits to the site for the past three-year period, and the age, gender 
and other attributes of respondents. The travel cost consists of 
actual expenditures from home to the site that are surveyed through 
questionnaire, plus the time or opportunity cost of travel. The 

opportunity cost is estimated as the 1/3 of the minimum wage rate
5
. 

A total of 409 respondents participated in the survey. After 
 
5
 Cesario (1976) advocates using the 1/3 of the actual wage rate of a 

respondent. However, difficulty in enquiring into private matters prevents us 
from including such a question in the questionnaire. Thus, as a moderate 
figure, the 1/3 of the minimum wage rate is used. 

 
 
 
eliminating incomplete responses, the sample consists of 186 

observations
6
.  

The data set is originally analyzed in Sato and Kasubuchi (2005) 
 
 
 
 
6
 We also drop samples with the frequency of trips greater than or equal to 60. 

Our experience in the numerical optimizations showed that the log-likelihood 
functions became numerically unstable if those samples were incorporated. It is 
rather arbitrary, though Englin and Shonkwiler (1995) also eliminate samples 
with more than 12 trips. 



 
 
 
 

Table 5. Estimation results of the various recreation demand models. 
 

     Poisson   NegBin II  Generalized Poisson 
 

 Estimate Std Tr ES Std Tr ES Std Tr ES 
 

 Const. 1.619 1.632 1.442 1.245 0.499 -3.387 1.675 1.751 -0.912 
 

    (0.135) (0.137) (0.145) (0.395) (0.607) (0.884) (0.380) (0.294) (1.817) 
 

    -0.527 -0.580 -0.663 -0.193 -0.228 -0.279 -0.335 -1.950 -4.696 
 

    (0.045 (0.048) (0.051) (0.057) (0.073) (0.086) (0.103) (0.002) (1.314) 
 

    0.238 0.241 0.272 0.222 0.271 0.252 0.165 0.438 1.477 
 

    

(0.067) (0.068) (0.072) (0.192) (0.276) (0.202) (0.182) (0.236) (1.121) 
 

    
 

    -0.185 -0.181 -0.204 -0.284 -0.371 -0.320 -0.173 0.036 0.129 
 

    

(0.053) (0.054) (0.057) (0.157) (0.227) (0.166) (0.153) (0.139) (0.393) 
 

    
 

    0.484 0.493 0.552 0.599 0.828 0.739 0.442 0.636 1.357 
 

    (0.086) (0.087) (0.091) (0.277) (0.416) (0.297) (0.238) (0.002) (0.742) 
 

    0.360 0.360 0.406 0.427 0.559 0.503 0.257 0.197 0.604 
 

    (0.061) (0.061) (0.066) (0.168) (0.242) (0.177) (0.166) (0.190) (0.588) 
 

       0.900 2.397 74.695    
 

       (0.099) (0.700) (58.815)    
 

          1.336 3.406 1.703 
 

          (0.581) (0.002) (0.140) 
 

          -0.748 -1.107 -0.974 
 

          (0.194) (0.002) (0.014) 
 

 psd-R
2
 0.787 0.805 0.844 0.119 0.090 0.153 0.117 0.260 0.191 

 

 -logL 1153.7 1145.2 1232.9 594.1 561.9 570.2 583.5 542.4 552.5 
 

 AIC 2319.4 2302.3 2477.9 1202.3 1137.8 1154.4 1182.9 1100.8 1120.9 
 

 BIC 2338.7 2321.7 2497.2 1224.9 1160.3 1176.9 1208.7 1126.6 1146.7 
 

 CAIC 2344.7 2327.7 2503.2 1231.9 1167.3 1183.9 1216.7 1134.6 1154.7 
  

Notes: “Std”, “Tr” and “ES” stand for the standard, truncated and endogenously stratified models, respectively. The numbers in parenthesis are 

ML standard errors. The psd-R
2
 is the pseudo-R

2
 measure suggested by Maddala (1983, p.39). –logL denotes the negative of the log-likelihood 

at the estimates. AIC, BIC and CAIC denote the Akaike, Bayesian and consistent Akaike information criteria, respectively. 
 
 
 
who consider only the Std and Tr NegBin II models. We follow Sato 
and Kasubuchi (2005) regarding the choice of variables. The 
definition, sample mean and standard deviation of the variables 
used in the empirical analysis are summarized in Table 4. The 
mean of the number of trips is about 9.1 that is relatively large 
compared to the figures found in the previous researches. Its 
standard deviation takes about 11.2. The variance-mean ratio in the 
sample is more than 13. The analytical expressions for the mean 
and variance in Tables 2 and 3 show that the Poisson distribution is 
unable to capture this overdispersion in the sample both in the 
truncated and endogenously stratified models, whereas the other 

 
 
 
four distributions may capture it depending on the value of . This 
fact suggests that even if the truncation or endogenous stratification 
is considered, the Poisson distribution is not adequate when a 

sample from an on-site survey exhibits the overdispersion. 
 
 
RESULTS 
 
Numerical optimizations are carried out by the BFGS 

algorithm in the “optim” function of the statistical software 



     

Table 5. Contd.        

  Geometric   Borel   
 Std Tr ES Std Tr ES  

Const. 1.240 (0.414) 0.939(0.423) 0.322(0.318) 0.935(1.235) 0.118(0.818) -0.323(0.332)  

 -0.188(0.056) -0.277(0.085) -0.408(0.086) -0.122(0.082) -0.165(0.069) -0.256(0.078)  

 0.222(0.201) 0.252(0.203) 0.249(0.153) 0.177(0.599) 0.202(0.390) 0.185(0.158)  

 -0.286(0.164) -0.321(0.166) -0.285(0.126) -0.321(0.494) -0.372(0.320) -0.230(0.129)  

 0.599(0.291) 0.739(0.299) 0.748(0.223) 0.832(0.979) 1.008(0.652) 0.573(0.234)  

 0.428(0.176) 0.503(0.178) 0.493(0.135) 0.483(0.503) 0.567(0.327) 0.378(0.139)  
 
 
 
 
 
 
 
 
 

psd-R
2
 0.114 0.155 0.279 0.013 0.043 0.153 

 

-logL 
594.6 569.7 612.3 676.9 572.9 567.0 

 

      
 

AIC 
1201.2 1151.5 1236.6 1365.8 1157.9 1145.9 

 

      
 

BIC 
1220.6 1170.8 1255.9 1385.2 1177.2 1165.3 

 

      
 

CAIC 1226.6 1176.8 1261.9 1391.2 1183.2 1171.3 
  

Notes: “Std”, “Tr” and “ES” stand for the standard, truncated and endogenously stratified models, respectively. The numbers in parenthesis are 

ML standard errors. The psd-R2 is the pseudo-R2 measure suggested by Maddala (1983, p.39). –logL denotes the negative of the log-

likelihood at the estimates. AIC, BIC and CAIC denote the Akaike, Bayesian and consistent Akaike information criteria, respectively. 
 
 
 

R
7
. The variance covariance matrices of the estimates in 

various models are calculated from the inverse of the 
negative of the numerical Hessian. To ensure the global 
maximum of the likelihood functions, we use ten 
randomly chosen initial values of parameters to see if the 
convergence is achieved around the same estimates. All 
the versions of the Poisson, geometric and Borel, and the 
Std and Tr NegBin II distributions achieve the 
convergence without difficulty. In the ES NegBin II, the 
estimate of  is unstable while other parameters and the 
maximum of the log-likelihood function remain almost 
identical regardless of the value of . The Tr and ES 
generalized Poisson models are highly sensitive to 

starting values
8
. For these two models, we increase the 

 
7 R is downloadable from <www.r-project.org> at free of charge. 

 

8
 This is due to the property of the “optim” function of R in which the function 

value of the first iteration must be finite. The infinite values are ignored if 
 

 
 
 
number of different initial values, limit the range of initial 
values and finally obtain the optimum.  

Our primary intention here is to demonstrate how the 
results differ in various models under miscellaneous 
assumptions. Similar to the findings in Grogger and 
Carson (1991), we see that failure to account for 
overdispersion, truncation and endogenous stratification 
leads to substantial changes in parameter estimates and 
their standard errors. The estimation results of the five 
count data models under the three different distributional 
assumptions are tabulated in Table 5. The table contains 
the parameter estimates, standard errors, pseudo-  of 
Maddala (1983, p. 39), negative values of the log 
likelihood function at the maximum, and three information 
criterion (AIC, BIC and the consistent AIC). 
The parameter estimates are similar in their signs across 

 
happened during the course of the optimization. 



 
 
 
 

Table 6. Actual and predicted frequencies. 
 

   Poisson   NegBin II  Gen. Poisson Geometric  Borel  

Frequency Actual Std Tr ES Std Tr ES Std Tr ES Std Tr ES Std Tr ES 

1 31 2 1 1 1 1 1 1 65 1 1 1 1 1 0 1 
2 33 4 5 5 0 0 0 0 44 0 0 0 0 0 1 0 
3 19 5 6 5 2 1 2 3 27 0 1 2 4 2 2 3 
4 11 10 10 11 7 9 8 4 28 1 8 8 9 11 10 9 
5 19 9 8 8 12 13 14 9 16 9 12 14 15 15 18 15 
6 6 19 22 23 20 18 21 17 4 23 20 21 21 12 12 23 
7 4 17 17 16 21 25 21 19 2 59 21 21 20 25 26 19 
8 1 19 22 25 22 19 22 30 0 19 21 22 23 19 18 24 
9 1 15 10 9 24 27 21 23 0 9 27 21 14 20 19 13 
10 19 17 16 16 23 16 20 24 0 17 21 20 22 11 9 23 

11-15 7 65 63 61 52 52 51 55 0 35 52 51 53 63 60 50 
16-20 13 4 6 6 2 5 5 1 0 11 2 5 4 7 11 6 
21-25 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
26-30 11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
31+ 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
 
 
models and setups. In particular,  is estimated all 

negative, which agrees with the demand theory. 

Inaddition, the standard errors are small enough to reject 

by the t-test the null of  in almost all the models  
and setups.  and  have positive sign as 

expected. No information is available a priori for the other  
two.  and  are not significant based on the t-  
statistics other than the Poisson models while  has 

the significant positive relation with the number of trips in  
most of models. The levels of significance for  are  
mixed.  is not significant in all versions of the 

generalized Poisson and the Std and Tr Borel distribution, 

whereas it is highly significant in other models. All  
distributional parameters ( ,  and ) are highly 

significant except in the ES NegBin II, suggesting that the 

NegBin II and generalized Poisson models are preferred 
over the other three models.  

It should be emphasized that  in absolute value is 
systematically underestimated in the standard models, 
followed by the truncated models, compared to the 
endogenously stratified models. This finding is of great 
importance in empirical researches. Ignoring the 
truncation and endogenous stratification, or how the 
sample under consideration is collected, would seriously 
mislead arguments regarding, for instance, how the 
marginal change in travel cost affects the trips taken even 
if the population distribution is correctly specified. Another 
serious consequence can be found when one wants to 
evaluate the monetary value of a recreational site. This 
point is investigated in more detail later.  

Turning our attention to the overall performance of the 

models, it is not meaningful to directly compare the log 

 
 
 
 
likelihood values over the models or across the different 
setups because, except for some cases remarked in 
Table 1, models are not nested in one another. For those 
nested pairs, one can easily construct the likelihood ratio 
(LR) test statistics.  

For instance, the LR test statistics of the ES geometric 
against the ES NegBin II, and of the ES Borel against the 
ES generalized Poisson are 84.2 and 29.0, respectively. 
Both have the  distribution with one and two degrees of 
freedom, with 5% critical values of 3.8 and 6.0, 
respectively, so that in both cases, the null of the ES 
geometric and ES Borel models are rejected.  

Since no test is available for testing a particular model 
against all others, we rely on the information criteria to 

choose the one that describes the data set best
9
. The 

three criteria have similar variation, so that we focus on 
the values of AIC. Within each distribution, the 
endogenously stratified models do not necessarily have 
the smallest AIC. In fact, the truncated models attain the 
smallest except in the Borel distribution. However, 
because the theory encourages us to use it, we restrict 
our discussions to the endogenously stratified cases. 
Within the endogenously stratified settings, the 
generalized Poisson takes the minimum AIC, followed by 
the Borel, NegBin II, geometric and Poisson models. This 
result seems to suggest that the models with 
overdispersion are preferred to the Poisson model.  

The goodness of fit of a model is measured by the 

pseudo- . It varies greatly from 0.013 in the Std Borel 

model to 0.844 in the ES Poisson model. It is worth 

 
9
 Santos Silva (2001) proposed a score test for non-nested alternatives. 

Testing all possible combinations by the score test may enable us to select the 
appropriate one. 



 
 
 
 
Table 7. Estimated consumer surplus, their standard errors and the 95% confidence interval. 
 
 Distribution Type CS/Trip S.E. CI95L CI95U 
 Poisson Std 1.898 0.162 1.580 2.215 
  Tr 1.724 0.142 1.446 2.002 
  ES 1.508 0.116 1.281 1.736 

 NegBin II Std 5.174 1.518 2.198 8.150 
  Tr 4.393 1.411 1.628 7.158 
  ES 3.587 1.105 1.420 5.754 

 Generalized Poisson Std 2.982 0.912 1.195 4.769 
  Tr 0.513 0.001 0.512 0.514 
  ES 0.213 0.060 0.096 0.330 

 Geometric Std 5.327 1.588 2.214 8.440 
  Tr 3.615 1.116 1.427 5.802 
  ES 2.449 0.516 1.439 3.460 

 Borel Std 8.230 5.549 -2.645 19.106 
  Tr 6.062 2.549 1.066 11.057 
  ES 3.912 1.187 1.585 6.238  
Notes: CS/Trip is expressed in 10

3
 JPY. CI95L and CI95U denote the lower and upper bounds of the 95% confidence interval, 

respectively. 
 
 
 
mentioning that, in spite of being constructed under 
unsuitable assumptions, the Poisson models show 
relatively high pseudo-  values. Table 6 displays the 
actual and predicted numbers of trips from the various 
models. The predictions are made based on the mean 
equations listed in Table 2, and calculated by plugging 
the parameter estimates reported in Table 5 into the 
formulae.  

The predicted numbers are rounded to the nearest 
integers. From this table, one can see that most of the 
models fail to predict the number of trips greater than 21 
where we still have 22 actual observations. The only 
exception is the ES generalized Poisson model that 
predicts one in the range between 21 - 25, and the other 
in between 26 - 30. As long as the goodness of fit and the 
model predictability are concerned, the Poisson models 
perform well. If we further take into account the 
complexity of estimation in other models, the Std Poisson 
model may not be a bad choice at least for a prediction 
purpose. On the other hand, difference among the 
parameter estimates on the travel cost heavily affects the 
estimate of the economic benefit that a recreation site 
offers since the value is usually estimated though a 
function of the estimate of the coefficient on the travel 
cost. Therefore, for a purpose of an economic evaluation 
of a recreation site, ill- treatments for the overdispersion 
and the way how the data are collected would cause 
misleading results. The following subsection examines 
this aspect. 

 
 
 
Welfare analysis 
 
If we see  as a “quantity demanded”, the 
estimated models in the previous subsection can be 
regarded as the demand functions for the recreation site. 
Once we obtain a recreation demand function, the value 
that the recreation site provides is to be quantified 
through a welfare measure. The consumer surplus is 
typically used in TCM researches. Suppose that we have 
a population demand function for a particular site, and let 

the demand function be denoted by  where 
 is the price or the travel cost to the site, and  is 

the vector of the  th person's attributes without the 
element for the travel cost. Then, the per capita 
consumer surplus is defined, keeping other variables 
fixed, as the area under  from  to  where 

 is the current price. When the population mean is 
specified as , the per 
capita consumer surplus is given by 
 

 
(1) 

 
Where  is a coefficient on the travel cost. 

Consequently, the per capita per trip consumer surplus is 

calculated by 

 
(2)  



 
 
 
 
that is the negative of the reciprocal of . Since the 

models we consider in this paper all have the population 

means of the form , it is straightforward to 

construct the per capita per trip consumer surpluses, their 

standard errors and the confidence intervals from the 

coefficient estimates and variance covariance matrices 

found in the previous subsection.  
Table 7 contains the estimates of the per capita per trip 

consumer surplus (denoted as CS/Trip), their standard 

errors, and 95% confidence intervals. CS/Trip is expressed 

in  (  at the time of survey). The 

standard errors are constructed from the ML standard errors 

of the estimates by the Delta method. The last two columns 

in Table 7 correspond to the lower and upper bounds of the 

95% confidence interval, res-pectively. The estimates vary 

across different distributions and different setups. For the 

Std Borel model, the lower bound of the 95% confidence 

interval takes a negative  
value because the corresponding standard error of  is 
not small enough to reject the null of . 

One can clearly observe from Table 7 that ignorance of 

truncation or how the data are collected results in  
misleading outcomes. The fact that  is systematically 
underestimated is reflected in the estimates of the 
consumer surplus. Within each distribution, the standard 
case gives the highest estimate, followed by the 
truncated and endogenously stratified ones. The ratios of 
the estimate in the standard setup to the endogenously 
stratified one are approximately 14.0 in the generalized 
Poisson, about 2.1 in both the geometric and Borel, 1.4 in 
the NegBin II, and 1.3 in the Poisson models. If one uses 
the Std Poisson model in which the overdispersion, 
truncation and endogenous stratification are all 
disregarded, the resulting per capita per trip consumer 
surplus is nearly 8.9 times larger than the one derived in 
the ES generalized Poisson model. If one instead utilizes 
the ES Poisson, the discrepancy between them is still 
large around 7.1. 
 

 
CONCLUDING REMARKS 
 
In this article, we extend the truncated and endogenously 
stratified count data models, originally proposed by Shaw 
(1988), to three alternative discrete distributions, namely 
the generalized Poisson, geometric and Borel 
distributions. Analytical expressions of these models for 
the mean, variance and density function under the 
endogenous stratification are derived. Then as an 
illustration of how the improper treatments of the data 
generate divergent outcomes, we apply our theoretical 
results to the trip data that were collected on the 
recreation site.  

Our major findings can be summarized as follows. 

Among models considered in this paper the ES 
generalized Poisson performs well in terms of the 

information criterion while the ES NegBin II, which is the 

 
 
 

 
conventional alternative to the Poisson, does not fit well 
to the data set. The parameter on the travel cost tends to 
be underestimated in absolute value in the standard 
setups. This in turn induces the serious overestimation of 
the economic benefit that the recreation site offers to the 
society. In the extreme case where we miss both the 
overdispersion and endogenous stratification, the per 
capita per trip consumer surplus in the standard setup is 
almost nine times larger than the one found in the 
truncation and endogenous stratification. Even when the 
endogenous stratification is incorporated, ignoring the 
overdispersion produces the per capita per trip consumer 
surplus over seven times larger.  

Finally we state some directions and remaining tasks 
for further research. The data set we investigate here is a 
particular example of recreation behavior. There are 
miscellaneous types of recreations ranging for example 
from a day trip to a rural area, a camping in forests and 
an overnight stay in farmhouse to fishing, trekking and 
mountaineering. Accumulating empirical applications in 
different sorts of activities will help us to find a better 
model for the economic evaluation of recreation sites. 
The effect of the inclusion/exclusion of substitution sites, 
or more generally, the system of recreation demand will 
be necessary to investigate. 

The economic theory does not specify a particular 
statistical distribution for recreation trip behavior. In 
addition, there is a long list of discrete distributions. 
Accordingly extension to miscellaneous discrete 
distributions is another important direction. Constructing 
statistical tests is yet another area for the future research. 
Given that the assumptions we made for the various 
models hold, it is uncomplicated to derive Lagrange 
multiplier (LM) or score types of statistical tests. Building 
the LM test of the ES Poisson against the ES generalized 
Poisson would be an interesting example. Or building a 
non-nested LM test of the ES NegBin II against the ES 
generalized Poisson would be attractive from a practical 
point of view. However, it seems a demanding work to 
establish the asymptotic theories for the alternative 
models under the endogenous stratification, which are 
required to construct the above-mentioned statistical 
tests. 
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