Physiological and molecular insights into drought tolerance ..

Abstract


Sagadevan G Mundree *, Bienyameen Baker, Shaheen Mowla, Shaun Peters, Saberi Marais, Clare Vander Willigen, Kershini Govender, Alice Maredza, Samson Muyanga, Jill M Farrant and Jennifer A Thomson

Water is a major limiting factor in world agriculture. In general, most crop plants are highly sensitive to even a mild dehydration stress. There are however, a few genera of plants unique to Southern Africa, called “resurrection plants” which can tolerate extreme water loss or desiccation. We have used Xerophyta viscosa, a representative of the monocotyledonous resurrection plants to isolate genes that are associated with osmotic stress tolerance. Several genes that are differentially expressed, and that confer functional sufficiency to osmotically-stressed Escherichia coli are being studied at the molecular and biochemical levels. In this review, we use this as a basis to discuss the physiological and molecular insights into drought tolerance

Share this article

Select your language of interest to view the total content in your interested language

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Directory of Open Access Journals
  • CiteFactor
  • SCOPUS
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • PubMed
  • Rootindexing
  • Chemical Abstract Services (USA)
  • Academic Resource Index